Recent Advances in Wire-Based Additive Manufacturing

Presented by:

OSA Lasers in Manufacturing Technical Group
The OSA Lasers in Manufacturing Technical Group Welcomes You!
Technical Group Leadership 2019

Chair
K. Nithyanandan
ORC, Southampton, UK

Vice Chair
Filip Todorov
UFE, Prague

Secretary
Ricardas Buividas
Lastek Ptv Ltd

Events officer
Than Singh Saini
Toyota Itechnological Institute, Japan

Webinar officer
Zihao Wang
Institute of Physics, CAS, China

Social media officer
Pooja Gitty
ISP, CUSAT, India
Our Technical Group at a Glance

Our Focus

• A highly interdisciplinary group featuring members from both academia and industries covering a range of topics related to lasers.
• To discuss the technologies used in manufacturing applications that uses lasers for cutting, drilling, and welding processes.

Our Mission

• To benefit YOU
• To provide platform to optical community for connecting, Engaging and Exciting with others.
• To Organize webinars, social media, publications, technical events, business events, outreach
• Interested in presenting your research? Have ideas for TG events? Contact us at TGNonlinearOptics@osa.org.

Where To Find Us

• Website: www.osa.org/FL
• LinkedIn: https://www.linkedin.com/groups/8127636/9
Past/Upcoming Events:

1. Networking Event during OSA Laser Congress at Munich:
 Recent Trends in Laser Technology and Its Applications in Manufacturing
 Date: Monday, 30 Sep 2019 12:30-14:00
 Location: Austria Centre Vienna, Austria

2. Webinar 1:
 Recent Advances in Wire-based Additive Manufacturing
 Date: 09th January 2020, at 12:30 PM - 1:30 PM (Eastern Time (US and Canada))
 Dr. Yashwanth Kumar Bandari, Edison Welding Institute, Buffalo Manufacturing Works, USA

3. Panel Discussion during OSA High Brightness and Light-Driven Interaction Congress at Prague:
 Date: TBD
 Location: Prague Congress centre, Prague, Czech Republic
How to join this Group:

If you are OSA member: Log-in to your OSA Account and chose FL group in Technical Groups Category.

You can also join in our dedicated LinkedIn page:
https://www.linkedin.com/groups/8127636/9

If you have any interesting activities/ideas or interested in giving a Webinar/Talk/Panel Discussion, do let me know by email nithi.physics@gmail.com
Today’s Webinar

Recent Advances in Wire-Based Additive Manufacturing

Dr. Yashwanth Kumar Bandari

Edison Welding Institute, Buffalo Manufacturing Works, USA
ybandari@ewi.org

Speaker’s Short Bio:
Ph.D. degree from Cranfield University, UK
Postdoc at the Oak Ridge National Lab (ORNL) USA
Large Scale Metal Additive Manufacturing – Processes, Configuration, and Challenges

by

Dr. Yash Bandari

Additive Manufacturing Applications Engineer
Edison Welding Institute (EWI)
OSA Technical Seminar
9th January 2020
Agenda

✓ Overview of Metal Additive Manufacturing (AM)
✓ Processes for building large scale metal parts – wire-based AM
✓ Types of wire AM processes – which is the best?
✓ Case studies
✓ Technicalities and challenges for wide adaption
✓ Futuristic goals and conclusions
What is Additive Manufacturing (AM)/3D-Printing?

• AM is a technology that enables the fabrication of complex, near net shape components by deposition of many consecutive layers of one or more materials.

• Metaphor of Sculptor vs House builder.
The Traditional Approach: Subtractive Manufacturing
Additive Manufacturing (AM)

Plastic

or

Metal

• Stereolithography
• Fusion deposition modelling
•
Metal AM // What is it?

Very Simply

- Also known as
 - Additive (Layer) Manufacture (A(L)M)
 - (Laser) Cladding
 - Buttering
 - Digital manufacture
 - Direct Light Fabrication
 - Direct Metal Casting (DMC)
 - Direct Metal (Laser) Deposition (DM(L)D)
 - Laser Direct Casting or Deposition
 - Laser casting
 - Laser clad casting
 - Laser consolidation
 - Laser curing
 - Laser Engineered Net Shaping (LENS)
 - Lasform
 - Laser melting
 - (Metal) Rapid Prototyping
 - Net shape manufacture
 - Net shape engineering
 - Shaped deposition manufacturing
 - Shaped melting
 - Selective Laser Sintering (SLS)
 - Selective Laser Melting (SLM)
 - Shaped Metal Deposition (SMD)
 - Shape Melting Technology (SMT)
 - Shape welding
 - Solid freeform fabrication (SFF)
Three main constituents are needed:

2. Feedstock;
3. Manipulator.

The combinations of different types of each constituent creates a wide range of metal AM processes.
Metal Additive manufacturing processes

- Beam
 - Laser
 - Wire
 - Powder
 - Powder bed
 - Blown powder
 - Electron beam
 - Wire/Powder
 - Wire fed/Powder bed
 - EBAM/Electron Beam Melting
 - WAAM

- Arc
 - TIG, MIG, Plasma
 - Wire

- LMD-w
- SLM
- LMD
Basic metal AM system configuration

- Slicing into layers
- Process Algorithms
- Layer thickness ranges
- Geometric Data Input (3D CAD)

Control System & Software

- Tool Paths and Process Parameters
- Build sequence strategy

Basic AM Hardware

- NC or robot Controller
- Motion System
- Heat Source
- Material Supply

Additional Functionality

- Inspection Shape/Defects
- Integrated Finishing

Additional Processes

- Powder/Wire/Combinations
- Robots, Gantries, Mirrors, Magnetics
- Laser, Electron Beam, Arc
Metal AM // Which system to use?

Resolution depends on the exact width-to-height ratio and depends on several factors but is usually at best 1.5 times the layer height.

For a single axisymmetric energy source at maximum melting efficiency:
The build rate depends on the square of the layer height.
Direct feed - powder or wire?

<table>
<thead>
<tr>
<th></th>
<th>Powder</th>
<th>Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Quality</td>
<td>Variable</td>
<td>High (Ti, Fe, Ni), variable Al</td>
</tr>
<tr>
<td>Feeding</td>
<td>Complicated unless using side feed</td>
<td>Easy well established industrial process</td>
</tr>
<tr>
<td>Material efficiency</td>
<td>Typical 40 - 60%</td>
<td>100%</td>
</tr>
<tr>
<td>Safety issues</td>
<td>Yes – especially Ti/Al</td>
<td>No</td>
</tr>
<tr>
<td>Recycling</td>
<td>Possible with processing</td>
<td>Not required</td>
</tr>
<tr>
<td>Out of position deposition</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Rotation problem</td>
<td>Coaxial – no, side feed yes</td>
<td>CMT – no, plasma - yes</td>
</tr>
</tbody>
</table>
Wire-fed Metal AM

Slice an object into layers

Programme a robot or machine tool to trace out the layers

Using a deposition tool to **build up** your part
Wire fed Additive Manufacture – History

• **1926** Baker patented “The use of an electric arc as a heat source to generate 3D objects depositing molten metal in superimposed layers”

• **1971** Ujiie (Mitsubishi) Pressure vessel fabrication using SAW, electroslag and TIG, also multiwire with different wires to give functionally graded walls

• **1993** Prinz and Weiss patent combined weld material build up with CNC milling – called Shape Deposition Manufacturing (SDM)

• **1994-99** Cranfield University develop Shaped Metal Deposition (SMD) for Rolls Royce for engine casings, various processes and materials were assessed – still in production
Electron Beam Additive Manufacturing (EBAM)
Wire + Arc AM (WAAM)

Plasma or TIG based deposition

MIG based deposition
Laser Metal Deposition with wire (LMD-w)
Direct feed: E-Beam or Laser or Arc?

<table>
<thead>
<tr>
<th>Criteria</th>
<th>E-Beam</th>
<th>Laser</th>
<th>Arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Capital</td>
<td>High ($400k – 4kW)</td>
<td>Low-Medium ($100k – 4kW)</td>
</tr>
<tr>
<td></td>
<td>Running</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Power efficiency</td>
<td>>80%</td>
<td>10% (CO2 lasers)</td>
<td>>80% (MIG)</td>
</tr>
<tr>
<td>Heat and Mass transfer control</td>
<td>Yes</td>
<td>Yes</td>
<td>No (MIG)</td>
</tr>
<tr>
<td>Surface finish</td>
<td>Good</td>
<td>Very Good</td>
<td>Poor (MIG)</td>
</tr>
<tr>
<td>Feature size</td>
<td>0.5mm (upwards)</td>
<td>0.2mm (upwards)</td>
<td>1mm (upwards)</td>
</tr>
<tr>
<td>Residual stress</td>
<td>Less</td>
<td>Less</td>
<td>High</td>
</tr>
<tr>
<td>Safety issues</td>
<td>Very high</td>
<td>Very high</td>
<td>Medium</td>
</tr>
<tr>
<td>Build rate</td>
<td>High – very high</td>
<td>Medium - high</td>
<td>Medium - high</td>
</tr>
</tbody>
</table>
Organizations applying wire-based AM

<table>
<thead>
<tr>
<th>Process</th>
<th>Organization/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBAM</td>
<td>Edison welding institute (EWI), Sciaky, FAMAero, Lockheed Martin, University of waterloo etc.</td>
</tr>
<tr>
<td>LMD-w</td>
<td>Edison welding institute (EWI), Oak ridge national lab, GKN Aerospace, Additec, Fraunhofer, RWTH Achen, SMU Texas, Miller electric, MWES etc.</td>
</tr>
<tr>
<td>WAAM</td>
<td>Edison welding institute (EWI), Oak ridge national lab, Lincoln electric, Cranfield University, IIT Bombay, Gefertec, TWI, University of Nottingham, Wollongong University, Norsk Titanium, Glen Almond Technologies, LM UK etc.</td>
</tr>
</tbody>
</table>
Wire-feed Process features – deposit composition control using multiple feeds

Multi wire approach

Wire + Powder

3 wire (Al8%Cu1.5%Mg – 140HV)
Part features

- Angled and horizontal walls
- Straight near net shape Ti thin wall
- Machined intersections
- Medium complexity 2D part
- Weight efficient structure
- With mixed materials
Example parts - 12 x projectiles

Mass 32 kg each // Deposition rate 4 kg/hr

After machining

After assembly and just before firing
Case studies

Landing gear component

<table>
<thead>
<tr>
<th></th>
<th>Before Machining</th>
<th>After Machining</th>
<th>Buy-to-fly</th>
<th>Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>240 kg</td>
<td>21 kg</td>
<td>11.6</td>
<td>91%</td>
</tr>
<tr>
<td>AM</td>
<td>24 kg</td>
<td>21 kg</td>
<td>1.15</td>
<td>13%</td>
</tr>
</tbody>
</table>
Other titanium parts
Tandem robots - Aluminium wing rib – case study
This manufacturing method saved 500kg of material

<table>
<thead>
<tr>
<th>Design option (MRR = 65 kg/h)</th>
<th>BTF</th>
<th>Cost (£k)</th>
<th>Cost red.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machined from solid</td>
<td>45</td>
<td>4.9</td>
<td>-</td>
</tr>
<tr>
<td>WAAM</td>
<td>12.3</td>
<td>2</td>
<td>58%</td>
</tr>
</tbody>
</table>
Example mechanical properties

<table>
<thead>
<tr>
<th>Material</th>
<th>Titanium</th>
<th>Aluminium</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6Al4V</td>
<td>2319</td>
<td>5087</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal rolled</td>
</tr>
<tr>
<td>2% Yield (MPa)</td>
<td>870</td>
<td>810</td>
<td>1020</td>
</tr>
<tr>
<td>UTS (MPa)</td>
<td>920</td>
<td>890</td>
<td>1075</td>
</tr>
<tr>
<td>Elong. (%)</td>
<td>12.2</td>
<td>20.3</td>
<td>13</td>
</tr>
</tbody>
</table>
Wire-fed Technicality/Challenges

Technicality

System Development
- WAAM/LMD-w/EBAM
 - Process type
 - Process algorithms
 - Feature building
 - Build strategies
 - New processes
- Other processes
 - 2.5D rolling
 - Laser peening
 - Grain structure measurement
 - Hybrid manufacture
 - Integrated NDT

Hardware
- Precision wire feeding
- Local shielding
- Ruggedisation
- Process monitoring
- Robotic/Gantry systems
- Machine tools

CAM Software
- Wall width control
- Build sequence GUI
- Feature building
- Feature recognition
- Auto build strategy

Commercial systems

Materials
- New
 - High strength aluminium
 - Refractory metals
 - Maraging steels
 - Super-alloys
 - Metal foams
 - MMCs
 - Low CTE materials
 - Mixed material systems
- Performance
 - Tensile
 - Fatigue
 - Fracture toughness
 - Crack propagation
 - Corrosion

Qualified materials

Design Tools
- Optimisation
 - Part to build design
 - Hybrid manufacture decision support system
 - Knowledge expert system
 - Computer aided planning

Mature Wire-based AM

Industrial Applications

Design capability
Implementing smart manufacturing (Ideas)

- Cobots – personal assistant like siri, alexa etc.
- Remote operator access – operator less part building
- Data logging – save all the process data
- Cloud computing – save the data in cloud for anyone to access
- Machine learning – predict when to change consumables, safety concerns
- Data analytics – perform in-situ monitoring and analyse
- Process simulation (not only visualization) – predict distortion, residual stresses etc
- Sharing economy – anyone can use the machine
Future - Tandem operations (Hybrid)

Deposition robots

Machining robots
AM cell of the future (Hybrid)

Machining

Deposition robots
Conclusions

- **Wire-fed Additive Manufacturing** is a feasible solution for low to medium complexity, **medium to large scale metal parts**

- **Any material** available in the form of wire can be applied

- **High deposition rates**, unlimited build volume, low capital and material costs

- WAAM, LMD-w, EBAM – each of them has pros/cons

- Qualification and certification still a bottle neck

- **Smart manufacturing** can be applied like cobots, cloud computing, remote access, machine learning, data analytic etc.
Thanks for your attention!

Dr. Yash Bandari
ybandari@ewi.org