Quantitative Molecular Spectroscopy in Cavity

Presented by:
Technical Group Leadership:

Krishnan Parameswaran, Analog Devices Inc., USA

Joachim Sacher, Sacher Lasertechnik GmbH, Germany

Amartya Sengupta, Indian Institute of Technology Delhi, India
Technical Group Website:
www.osa.org/EnvironmentalSensingTG

Over 1,100 Total Members

Scope:
This technical group covers optical tools and techniques used in environmental sensing, including DIAL and LIDAR, hyperspectral monitoring, detection, processing and characterization, surveying applications, atmospheric propagation, pollution monitoring, and remote imaging. Also included in this area is remote sensing for military and commercial applications such as land management, target detection, and disaster monitoring.
Contact your Technical Group and Get Involved!

www.linkedin.com/groups/12055528

- Linked-In site (global reach)
- Announce new activities
- Promote interactions
- Complement the OSA Technical Group

Member List

Activities: Webinars, Special Sessions in CLEO/FiO
Dr. Patrick Dupré, Université du Littoral Côte d'Opale

Patrick Dupré is a recognized expert in molecular high resolution and quantitative laser Spectroscopy. His career has included work in physics and chemistry laboratories in France, the United States, the United Kingdom and Germany. His interests include experimental spectroscopy and modeling. He is presently involved in developing Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) for metrology applications and for trace gas detection in the Mid-InfraRed. Spectroscopy with high finesse cavity is an ideal tool for saturated absorption, i.e. under sub-Doppler conditions.
Outline

1. Motivations
2. Introduction to CEAS
3. Absorption in Cavity
4. Saturated Absorption: Modeling and Simulations
5. NICE-OHMS: Principles and Implementation
6. \(\text{C}_2\text{H}_2 \) in the NIR
7. HD in the NIR (Forbidden Transition)
8. Bibliography
9. Conclusions
Motivations

- Ultrasensitivity, i.e., Trace Detection
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
- Gas Metrology (OFC)
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
- Gas Metrology (OFC)
- Line Shape Analysis
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
- Gas Metrology (OFC)
- Line Shape Analysis
- Compact Setups
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
- Gas Metrology (OFC)
- Line Shape Analysis
- Compact Setups
- Beyond the linear Absorption (Doppler-Free)
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
- Gas Metrology (OFC)
- Line Shape Analysis
- Compact Setups
- Beyond the linear Absorption (Doppler-Free)
- Ab-initio Molecular Calculation Benchmarking
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
- Gas Metrology (OFC)
- Line Shape Analysis
- Compact Setups
- Beyond the linear Absorption (Doppler-Free)
- Ab-initio Molecular Calculation Benchmarking
- Molecule Internal Couplings (like Hyperfine Couplings)
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
- Gas Metrology (OFC)
- Line Shape Analysis
- Compact Setups
- Beyond the linear Absorption (Doppler-Free)
- Ab-initio Molecular Calculation Benchmarking
- Molecule Internal Couplings (like Hyperfine Couplings)
- Physics Beyond the Standard Model (i.e., QED)
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
- Gas Metrology (OFC)
- Line Shape Analysis
- Compact Setups
- Beyond the linear Absorption (Doppler-Free)
- Ab-initio Molecular Calculation Benchmarking
- Molecule Internal Couplings (like Hyperfine Couplings)
- Physics Beyond the Standard Model (i.e., QED)
- Challenging the Photon-Shot-Noise
Motivations

- Ultrasensitivity, i.e., Trace Detection
- Quantitative Spectroscopy of Gas (aerosol?)
- Gas Metrology (OFC)
- Line Shape Analysis
- Compact Setups
- Beyond the linear Absorption (Doppler-Free)
- Ab-initio Molecular Calculation Benchmarking
- Molecule Internal Couplings (like Hyperfine Couplings)
- Physics Beyond the Standard Model (i.e., QED)
- Challenging the Photon-Shot-Noise
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: Enhancing the Absorption Length, i.e., the length of interaction between light and analyte. How?
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: Enhancing the Absorption Length, i.e., the length of interaction between light and analyte. How?
- Multipass Cell
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
 - White Cell

Alternative:
- Resonators (using small Dichroic Mirrors, 1984)
- BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy) based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, OFCS.
- It requires a Dispersive Detection
- ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis
- CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O'Keefe 1988)
- Cavity Finesse measurement (in Frequency)
- Cavity Impedance Mismatch (Ring)
- FMS (Frequency Modulation Spectroscopy)
- NICE-OHMS (Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy)
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?
- Multipass Cell
 - White Cell
 - Herriot Cell
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea:
Enhancing the Absorption Length, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
- White Cell
- Herriot Cell
- Large Metallic Mirrors

Alternative:
- Resonators (using small Dichroic Mirrors, 1984)
- BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy) based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, OFCS. It requires a Dispersive Detection
- ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis
- CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O’Keefe 1988)
- Cavity Finesse measurement (in Frequency)
- Cavity Impedance Mismatch (Ring)
- FMS (Frequency Modulation Spectroscopy)
- NICE-OHMS (Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy)
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
 - White Cell
 - Herriot Cell

- **Alternative: Resonators** (using small Dichroic Mirrors, 1984)

Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
 - White Cell
 - Herriot Cell

- Alternative: **Resonators** (using small Dichroic Mirrors, 1984)

- **BBCEAS** (Broad-Band Cavity-Enhanced Absorption Spectroscopy) based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, OFCS. It requires a **Dispersive Detection**
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea:
Enhancing the Absorption Length, i.e., the length of interaction between light and analyte. How?

Multipass Cell
White Cell
Herriot Cell

Alternative:
Resonators (using small Dichroic Mirrors, 1984)

BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy)
based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, OFCS.
It requires a Dispersive Detection

ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis
CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O'Keefe 1988)

Cavity Finesse measurement (in Frequency)
Cavity Impedance Mismatch (Ring)
FMS (Frequency Modulation Spectroscopy)
NICE-OHMS (Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy)
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
 - White Cell
 - Herriot Cell

- Alternative: **Resonators** (using small Dichroic Mirrors, 1984)

- BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy) based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, **OFCS**. It requires a **Dispersive Detection**

- **ICOS** (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea:
Enhancing the Absorption Length, i.e., the length of interaction between light and analyte. How?
Multipass Cell
White Cell
Herriot Cell
Alternative:
Resonators
(using small Dichroic Mirrors, 1984)
BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy) based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, OFCS.
It requires a Dispersive Detection
ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis
Off-Axis ICOS with recycling mirror to recover the leaking input power
(with the permission of J. Mandon)
CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O'Keefe 1988)
Cavity Finesse measurement (in Frequency)
Cavity Impedance Mismatch (Ring)
FMS (Frequency Modulation Spectroscopy)
NICE-OHMS (Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy)
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
 - White Cell
 - Herriot Cell

- Alternative: **Resonators** (using small Dichroic Mirrors, 1984)
- BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy) based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, **OFCS**. It requires a **Dispersive Detection**
- ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis
- CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O’Keefe 1988)
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea:

- Enhancing the Absorption Length, i.e., the length of interaction between light and analyte.

- How?
 - Multipass Cell
 - White Cell
 - Herriot Cell

Alternative:

- Resonators (using small Dichroic Mirrors, 1984)

BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy)

- Based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, OFCS.
- It requires a Dispersive Detection

ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis

CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O'Keefe 1988)

Cavity Finesse measurement (in Frequency)

Cavity Impedance Mismatch (Ring)

FMS (Frequency Modulation Spectroscopy)

NICE-OHMS (Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy)

With the permission of C. Vallance
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
 - White Cell
 - Herriot Cell

- Alternative: **Resonators** (using small Dichroic Mirrors, 1984)

- BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy)

 Based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, **OFCS**. It requires a **Dispersive Detection**

- ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis

- CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O’Keefe 1988)

- Cavity Finesse measurement (in Frequency)
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
 - White Cell
 - Herriot Cell

- Alternative: **Resonators** (using small Dichroic Mirrors, 1984)

- BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy) based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, **OFCS**. It requires a **Dispersive Detection**

- ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis

- CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O’Keefe 1988)

- Cavity Finesse measurement (in Frequency)

- Cavity Impedance Mismatch (Ring)
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
 - White Cell
 - Herriot Cell

- **Alternative: Resonators** (using small Dichroic Mirrors, 1984)

- BBCEAS (Broad-Band Cavity-Enhanced Absorption Spectroscopy) based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, OFCS. It requires a **Dispersive Detection**

- ICOS (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis

- CRDS (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O’Keefe 1988)

- Cavity Finesse measurement (in Frequency)
- Cavity Impedance Mismatch (Ring)
- FMS (Frequency Modulation Spectroscopy)
Cavity Enhanced Absorption Spectroscopy (CEAS)

Basic Idea: **Enhancing the Absorption Length**, i.e., the length of interaction between light and analyte. How?

- Multipass Cell
 - White Cell
 - Herriot Cell

- Alternative: **Resonators** (using small Dichroic Mirrors, 1984)
- **BBCEAS** (Broad-Band Cavity-Enhanced Absorption Spectroscopy) based on Broad Band sources (coherent or not): Arc Lamps, Supercontinuum, LED, **OFCS**. It requires a **Dispersive Detection**

- **ICOS** (Integrated Cavity Output Spectroscopy), On-Axis, vs. Off-Axis

- **CRDS** (Cavity Ring-Down Spectroscopy), Continuous or Pulsed Wave, Broad-Band vs. Narrow-Band Source (see O’Keefe 1988)

- Cavity Finesse measurement (in Frequency)
- Cavity Impedance Mismatch (Ring)
- **FMS** (Frequency Modulation Spectroscopy)
- **NICE-OHMS** (Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy)
Outline

1 Motivations
2 Introduction to CEAS
3 Absorption in Cavity
4 Saturated Absorption: Modeling and Simulations
5 NICE-OHMS: Principles and Implementation
6 C_2H_2 in the NIR
7 HD in the NIR (Forbidden Transition)
8 Bibliography
9 Conclusions
Absorption

\[I_0 I(\omega) \]

Source

Detector

\[L_{abs} \]
The Absorption Beer-Lambert Law:

\[I(\omega) = I_0 e^{-\alpha(\omega) L_{\text{abs}}} \]

\(\alpha(\omega) = N \sigma(\omega) \) is the frequency depending absorption coef. (in cm\(^{-1}\)).
The Absorption Beer-Lambert Law:

\[I(\omega) = I_0 e^{-\alpha(\omega) L_{\text{abs}}} \]

\(\alpha(\omega) = N \sigma(\omega) \) is the frequency depending absorption coef. (in cm\(^{-1}\)).

Approximation of the Optically Thin Medium [\(\alpha(\omega) L_{\text{abs}} \ll 1 \)]:

\[\Delta I(\omega) = \frac{I_0 - I(\omega)}{I_0} = \alpha(\omega) L_{\text{abs}} \]
Background

- The Absorption Beer-Lambert Law:
 \[I(\omega) = I_0 e^{-\alpha(\omega)L_{abs}} \]

 \[\alpha(\omega) = \mathcal{N} \sigma(\omega) \] is the frequency depending absorption coefficient (in cm\(^{-1}\)).

- Approximation of the Optically Thin Medium \([\alpha(\omega)L_{abs} \ll 1]\):
 \[\Delta I(\omega) = \frac{I_0 - I(\omega)}{I_0} = \alpha(\omega)L_{abs} \]

- The Number Density \((\mathcal{N} \text{ in cm}^{-3})\) is proportional to
The Absorption Beer-Lambert Law:

\[I(\omega) = I_0 e^{-\alpha(\omega) L_{abs}} \]

\(\alpha(\omega) = N \sigma(\omega) \) is the frequency depending absorption coef. (in cm\(^{-1}\)).

Approximation of the Optically Thin Medium \([\alpha(\omega) L_{abs} \ll 1]\):

\[\Delta I(\omega) = \frac{I_0 - I(\omega)}{I_0} = \alpha(\omega) L_{abs} \]

The Number Density \((N \text{ in cm}^{-3})\) is proportional to

- the Gas Pressure
The Absorption Beer-Lambert Law:

\[I(\omega) = I_0 e^{-\alpha(\omega) L_{abs}} \]

\(\alpha(\omega) = N \sigma(\omega) \) is the frequency depending absorption coef. (in cm\(^{-1}\)).

Approximation of the Optically Thin Medium \([\alpha(\omega) L_{abs} \ll 1] \):

\[\Delta I(\omega) = \frac{I_0 - I(\omega)}{I_0} = \alpha(\omega) L_{abs} \]

The Number Density \((N \text{ in cm}^{-3}) \) is proportional to

- the Gas Pressure
- the Concentration of each specific species
The Absorption Beer-Lambert Law:

\[I(\omega) = I_0 e^{-\alpha(\omega) L_{abs}} \]

\(\alpha(\omega) = N \sigma(\omega) \) is the frequency depending absorption coefficient (in cm\(^{-1}\)).

Approximation of the Optically Thin Medium \([\alpha(\omega) L_{abs} \ll 1]\):

\[\Delta I(\omega) = \frac{I_0 - I(\omega)}{I_0} = \alpha(\omega) L_{abs} \]

The Number Density \((N \text{ in cm}^{-3})\) is proportional to

- the Gas Pressure
- the Concentration of each specific species

The line absorption Cross-section \((\sigma(\omega) \text{ in cm}^2/\text{molecule})\), includes a Normalized Lineshape (like a Voigt profile whose width is pressure depending):

\[\int \sigma(\omega) \, d\omega = S \]

where \(S\) is the Line Intensity (in cm/molecule if \(\omega\) is in cm\(^{-1}\)).
The Absorption Beer-Lambert Law:

\[I(\omega) = I_0 e^{-\alpha(\omega)L_{abs}} \]

\[\alpha(\omega) = N \sigma(\omega) \] is the frequency depending absorption coef. (in cm\(^{-1}\)).

Approximation of the Optically Thin Medium \([\alpha(\omega)L_{abs} \ll 1]\):

\[\Delta I(\omega) = \frac{I_0 - I(\omega)}{I_0} = \alpha(\omega)L_{abs} \]

The Number Density \([N \text{ in cm}^{-3}]\) is proportional to
- the Gas Pressure
- the Concentration of each specific species

The line absorption Crosssection \([\sigma(\omega) \text{ in cm}^2/\text{molecule}]\), includes a Normalized Lineshape (like a Voigt profile whose width is pressure depending):

\[\int \sigma(\omega) \, d\omega = S \]

where \(S\) is the Line Intensity (in cm/molecule if \(\omega\) is in cm\(^{-1}\)).

\(S\) is available in the database like HITRAN \([\text{http://hitran.org/}]\)
Absorption in a Resonant Cavity

\[I_0(\omega) \]

\[L_{abs} \]

Source

ADC

Computer

Detector

ADC

Computer

Spectroscopy in Cavity Dec. 2018 10 / 47
Main Features of a Symmetric Resonant Cavity

- Cavity Finesse (Enhancement Factor): $F = \frac{\pi}{L}$
- Free Spectral Range (FSR): $FSR = \frac{c}{L_{cav}}$
- Response Time (or Characteristics Time): $\tau_{RD} = F \frac{L_{cav}}{\pi c} = \frac{F}{2} \frac{\pi}{t_{rt}} = \frac{1}{2} \frac{\Delta c_{cav}}{FSR}$
- Equivalent Absorption Length: $L_{eq} = \frac{2}{F} \frac{\pi}{L_{cav}} = \frac{2}{c \tau_{RD}}$
- Trapped Power: $I_{cav} = = \frac{F}{\pi} I_{in}$
Main Features of a Symmetric Resonant Cavity

- Cavity Finesse (Enhancement Factor)

\[F = \frac{2\pi}{L} = \frac{\pi \sqrt{R}}{1 - R} \]
Main Features of a Symmetric Resonant Cavity

- Cavity Finesse (Enhancement Factor)
 \[F = \frac{2\pi}{\mathcal{L}} = \frac{\pi \sqrt{R}}{1 - R} \]

- Free Spectral Range (FSR)
 \[FSR = \frac{c}{2L_{cav}} \]
Main Features of a Symmetric Resonant Cavity

- **Cavity Finesse (Enhancement Factor)**

\[
\mathcal{F} = \frac{2\pi}{\mathcal{L}} = \frac{\pi \sqrt{R}}{1 - R}
\]

- **Free Spectral Range (FSR)**

\[
FSR = \frac{c}{2L_{cav}}
\]

- **Response Time (or Characteristics Time)**

\[
\tau_{RD} = \frac{\mathcal{F} L_{cav}}{\pi c} = \frac{\mathcal{F}}{2\pi} t_{rt} = \frac{1}{2\Delta_{cav}} = \frac{\mathcal{F}}{2\pi FSR}
\]
Main Features of a Symmetric Resonant Cavity

- Cavity Finesse (Enhancement Factor)
 \[\mathcal{F} = \frac{2\pi}{L} = \frac{\pi \sqrt{R}}{1 - R} \]

- Free Spectral Range (FSR)
 \[FSR = \frac{c}{2L_{cav}} \]

- Response Time (or Characteristics Time)
 \[\tau_{RD} = \frac{\mathcal{F} L_{cav}}{\pi c} = \frac{\mathcal{F}}{2\pi} t_{rt} = \frac{1}{2\Delta_{cav}} = \frac{\mathcal{F}}{2\pi FSR} \]

- Equivalent Absorption Length
 \[L_{eq} = \frac{2\mathcal{F} L_{cav}}{\pi} = 2c\tau_{RD} \]
Main Features of a Symmetric Resonant Cavity

- Cavity Finesse (Enhancement Factor)
 \[\mathcal{F} = \frac{2\pi}{L} = \frac{\pi \sqrt{R}}{1 - R} \]

- Free Spectral Range (FSR)
 \[FSR = \frac{c}{2L_{cav}} \]

- Response Time (or Characteristics Time)
 \[\tau_{RD} = \frac{\mathcal{F} L_{cav}}{\pi c} = \frac{\mathcal{F}}{2\pi} t_{rt} = \frac{1}{2\Delta_{cav}} = \frac{\mathcal{F}}{2\pi FSR} \]

- Equivalent Absorption Length
 \[L_{eq} = \frac{2\mathcal{F} L_{cav}}{\pi} = 2c \tau_{RD} \]

- Trapped Power
 \[I_{cav} = \frac{\mathcal{F} I_{in}}{\pi} \]
Formalism: Transfer Function (“Filter”) of a Lossless Cavity

In the Frequency Domain

$I_{\text{out}}(\omega) = |T_{\text{cav}}(\omega) \cdot E_{\text{in}}(\omega)|^2$

with (obtained from multiple interferences)

$T_{\text{cav}}(\omega) = T_{e} - i\omega t_{rt}/2 + R \sum_{i}^{1} (\omega - i\omega_{\text{FSR}})\Delta_{\text{cav}}(\omega)$

and with

$R' = R_{e} - \alpha(\omega)L_{\text{abs}}$

In the Time Domain

$I_{\text{out}}(t) = \left| FT^{-1}[T_{\text{cav}}(\omega) \cdot E_{\text{in}}(\omega)] \right|^2$
Formalism: Transfer Function ("Filter") of a Lossless Cavity

- In the Frequency Domain

\[I_{out}(\omega) = |T_{cav}(\omega) \cdot E_{in}(\omega)|^2 \]

with (obtained from multiple interferences)

\[T_{cav}(\omega) = \frac{T \, e^{-i\omega t_r / 2}}{1 + R \, e^{i\omega t_r}} = \frac{T}{1 - R} \sum_i \frac{1}{1 + i \left(\frac{\omega - i \omega_{FSR}}{\Delta_{cav}(\omega)} \right)} \]

and with

\[R' = R \, e^{-\alpha(\omega) L_{abs}} \]
Formalism: Transfer Function (“Filter”) of a Lossless Cavity

- **In the Frequency Domain**

\[I_{out}(\omega) = |T_{cav}(\omega) \cdot E_{in}(\omega)|^2 \]

with (obtained from multiple interferences)

\[T_{cav}(\omega) = \frac{T e^{-i\omega trt/2}}{1 + Re^{i\omega trt}} = \frac{T}{1 - R} \sum_i \frac{1}{1 + i\left(\frac{\omega - i\omega_{FSR}}{\Delta_{cav}(\omega)}\right)} \]

and with

\[R' = Re^{-\alpha(\omega)L_{abs}} \]

- **In the Time Domain**

\[I_{out}(t) = \left| FT^{-1}\left[T_{cav}(\omega) \cdot E_{in}(\omega)\right]\right|^2 \]
Simulation: Pulsed Source

Case of a Fourier Transform Limited Pulsed Laser

Frequency Space

|E_{in}|^2

Δω_L

ω_L

ω

|F|^2

Δω

FSR

ω_{0p}

ω

|E_{out}|^2

Δω_L > FSR

ω_L

ω

Time Space

|E_{in}|^2

t_{coh}

INPUT

|f|^2

τ_e

t_{rt}

FILTER

|E_{out}|^2

t_{coh} < t_{rt} < τ_e

OUTPUT
Simulation: CW Source

Case of a CW Laser

\[\Delta \omega < \Delta \omega_L < \text{FSR} \]

Frequency Space

\[|E_{in}|^2 \quad \Delta \omega_L \]

\[F \quad \text{FSR} \quad \Delta \omega \]

Time Space

\[|E_{in}|^2 \quad t_{coh} \]

\[|f|^2 \quad t_{rt} \quad \tau_e \]

\[|E_{out}|^2 \quad t_{rt} < t_{coh}, t_{sw} \ll \tau_e \]

INPUT

FILTER

OUTPUT
Absorption in a Resonant Cavity

Linear Absorption at resonance (occupancy factor $\mu = 1$)

$$\tau_{RD}(\omega) - \tau_0 = \alpha(\omega)c$$

Alteration of the Detected Power

$$\Delta I(\omega) = \alpha(\omega)L_{eq}$$

NonLinear Absorption

$$\alpha(\omega, I)$$

Alteration of the Decay Shape (to nonexponential decay)

Lamb-dip, etc...

P. DUPRÉ (pdupre@gmx.com) (LPCA/ULCO)

Spectroscopy in Cavity

Dec. 2018
Absorption in a Resonant Cavity

- Linear Absorption at resonance (occupancy factor = 1)
Absorption in a Resonant Cavity

- **Linear Absorption** at resonance (occupancy factor = 1)
 - Alteration of the Characteristics Time (CRDS)

\[
\frac{1}{\tau_{RD}(\omega)} - \frac{1}{\tau_0} = \alpha(\omega) \ c
\]
Absorption in a Resonant Cavity

- **Linear Absorption** at resonance (occupancy factor = 1)
 - Alteration of the Characteristics Time (CRDS)

\[
\frac{1}{\tau_{RD}(\omega)} - \frac{1}{\tau_0} = \alpha(\omega) \ c
\]

- Alteration of the Detected Power

\[
\frac{\Delta I(\omega)}{I_0} = \alpha(\omega) \ L_{eq}
\]
Linear Absorption at resonance (occupancy factor = 1)
- Alteration of the Characteristics Time (CRDS)

\[
\frac{1}{\tau_{RD}(\omega)} - \frac{1}{\tau_0} = \alpha(\omega) \cdot c
\]

- Alteration of the Detected Power

\[
\frac{\Delta I(\omega)}{I_0} = \alpha(\omega) \cdot L_{eq}
\]

NonLinear Absorption
Absorption in a Resonant Cavity

- **Linear Absorption** at resonance (occupancy factor = 1)
 - Alteration of the Characteristics Time (CRDS)
 \[
 \frac{1}{\tau_{RD}(\omega)} - \frac{1}{\tau_0} = \alpha(\omega) c
 \]
 - Alteration of the Detected Power
 \[
 \frac{\Delta I(\omega)}{I_0} = \alpha(\omega) L_{eq}
 \]

- **NonLinear Absorption**
 - \(\alpha(\omega, I)\)
Absorption in a Resonant Cavity

- **Linear Absorption** at resonance (occupancy factor = 1)
 - Alteration of the Characteristics Time (CRDS)

\[
\frac{1}{\tau_{RD}(\omega)} - \frac{1}{\tau_0} = \alpha(\omega) \cdot c
\]

- Alteration of the Detected Power

\[
\frac{\Delta I(\omega)}{I_0} = \alpha(\omega) \cdot L_{eq}
\]

- **NonLinear Absorption**
 - \(\alpha(\omega, I)\)
 - Alteration of the Decay Shape (to nonexponential decay)
Absorption in a Resonant Cavity

- **Linear Absorption** at resonance (occupancy factor = 1)
 - Alteration of the Characteristics Time (CRDS)
 \[
 \frac{1}{\tau_{RD}(\omega)} - \frac{1}{\tau_0} = \alpha(\omega) c
 \]
 - Alteration of the Detected Power
 \[
 \frac{\Delta I(\omega)}{I_0} = \alpha(\omega) L_{eq}
 \]

- **NonLinear Absorption**
 - \(\alpha(\omega, I)\)
 - Alteration of the Decay Shape (to nonexponential decay)
 - **Lamb-dip**, etc...
Absorption in a Resonant Cavity

- **Linear Absorption** at resonance (occupancy factor = 1)
 - Alteration of the Characteristics Time (CRDS)

\[
\frac{1}{\tau_{RD}(\omega)} - \frac{1}{\tau_0} = \alpha(\omega) \ c
\]

- Alteration of the Detected Power

\[
\frac{\Delta I(\omega)}{I_0} = \alpha(\omega) \ L_{eq}
\]

- **NonLinear Absorption**
 - \(\alpha(\omega, I) \)
 - Alteration of the Decay Shape (to nonexponential decay)
 - Lamb-dip, etc...
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

\[
\text{Signal (Cavity Enhancement factor: } \sim F \text{)}
\]

\[
\text{Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)}
\]

\[
\frac{\Delta \nu}{\eta P_{\text{eff}}} = \left(\alpha L_{\text{eq}} \right)_{\text{min}}
\]

CRDS is intrinsically Immune to Source Intensity Fluctuations (discontinuous acquisition)

The “Direct” Absorption techniques require acquiring the Noise Immunity

Differential Absorption (DAS)
Amplitude Modulation
Frequency/Phase Modulation (FMS)
Beam Intensity Stabilization (AOM)

NICE-OHMS benefits of both: CW acquisition, and full noise Immunity.
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

- Signal (Cavity Enhancement factor: $\sim \mathcal{F}$)

CRDS is intrinsically immune to source intensity fluctuations (discontinuous acquisition).

The "Direct" absorption techniques require acquiring the noise immunity.

Differential Absorption (DAS), Amplitude Modulation, Frequency/Phase Modulation (FMS), Beam Intensity Stabilization (AOM).

NICE-OHMS benefits of both: CW acquisition, and full noise immunity.
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

- **Signal** (Cavity Enhancement factor: $\sim F$)
- **Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)**

$$\sqrt{\frac{2 e \Delta \nu}{\eta \langle P_{eff} \rangle}} = (\alpha L_{eq})_{min}$$
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

- Signal (Cavity Enhancement factor: $\sim F$)
- Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)

$$\sqrt{\frac{2e\Delta \nu}{\eta \langle P_{eff} \rangle}} = (\alpha L_{eq})_{\text{min}}$$

- CRDS is intrinsically Immune to Source Intensity Fluctuations (discontinuous acquisition)
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

- Signal (Cavity Enhancement factor: $\sim \mathcal{F}$)
- Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)

$$\sqrt{\frac{2 e \Delta \nu}{\eta \langle P_{\text{eff}} \rangle}} = (\alpha L_{eq})_{\text{min}}$$

- CRDS is intrinsically Immune to Source Intensity Fluctuations (discontinuous acquisition)
- The “Direct” Absorption techniques require acquiring the Noise Immunity
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

- Signal (Cavity Enhancement factor: $\sim F$)
- Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)

$$ \sqrt{\frac{2e\Delta\nu}{\eta\langle P_{eff} \rangle}} = (\alpha L_{eq})_{min} $$

- CRDS is intrinsically Immune to Source Intensity Fluctuations (discontinuous acquisition)
- The “Direct” Absorption techniques require acquiring the Noise Immunity
 - Differential Absorption (DAS)
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

- Signal (Cavity Enhancement factor: $\sim \mathcal{F}$)
- Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)

$$\sqrt{\frac{2e\Delta\nu}{\eta \langle P_{\text{eff}} \rangle}} = (\alpha L_{eq})_{\text{min}}$$

- CRDS is intrinsically Immune to Source Intensity Fluctuations (discontinuous acquisition)
- The “Direct” Absorption techniques require acquiring the Noise Immunity
 - Differential Absorption (DAS)
 - Amplitude Modulation
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

- Signal (Cavity Enhancement factor: $\sim F$)
- Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)

$$\sqrt{\frac{2e\Delta\nu}{\eta \langle P_{eff} \rangle}} = (\alpha L_{eq})_{min}$$

- CRDS is intrinsically Immune to Source Intensity Fluctuations (discontinuous acquisition)
- The “Direct” Absorption techniques require acquiring the Noise Immunity
 - Differential Absorption (DAS)
 - Amplitude Modulation
 - Frequency/Phase Modulation (FMS)
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

- Signal (Cavity Enhancement factor: $\sim \mathcal{F}$)
- Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)

\[\sqrt{\frac{2e\Delta \nu}{\eta \langle P_{\text{eff}} \rangle}} = (\alpha L_{\text{eq}})_{\text{min}} \]

- CRDS is intrinsically Immune to Source Intensity Fluctuations (discontinuous acquisition)
- The “Direct” Absorption techniques require acquiring the Noise Immunity
 - Differential Absorption (DAS)
 - Amplitude Modulation
 - Frequency/Phase Modulation (FMS)
 - Beam Intensity Stabilization (AOM)
Limit of Detection or Sensitivity

Analysis of the Signal to Noise Ratios (SNR) for the different techniques

- Signal (Cavity Enhancement factor: $\sim \mathcal{F}$)
- Source Intensity Fluctuations versus Photon-Shot-Noise (PSN)

$$\sqrt{\frac{2e\Delta\nu}{\eta \langle P_{eff} \rangle}} = (\alpha L_{eq})_{\text{min}}$$

- CRDS is intrinsically Immune to Source Intensity Fluctuations (discontinuous acquisition)
- The “Direct” Absorption techniques require acquiring the Noise Immunity
 - Differential Absorption (DAS)
 - Amplitude Modulation
 - Frequency/Phase Modulation (FMS)
 - Beam Intensity Stabilization (AOM)

- NICE-OHMS benefits of both: CW acquisition, and full noise Immunity.
NonLinear Absorption by CRDS

First demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.

Then, P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108

Applications:

High Resolution Spectroscopy

Simultaneous determination of the number density and of the cross section, from a single decay (CRDS)!

Attention

Requiring full control of the Intracavity Power

Modeling of the Nonlinear Interaction

Data Weighting (according to the noise source, see CRDS)

Crossover Resonances
NonLinear Absorption by CRDS

- First demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.
- **Then,**
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.
- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.
- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
 - S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.
- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
 - S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108
- **Applications:**
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.
- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
 - S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108

- **Applications:**
 - High Resolution Spectroscopy
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.

- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
 - S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108

- Applications:
 - High Resolution Spectroscopy
 - Simultaneous determination of the number density and of the crosssection, from a single decay (CRDS)!

P. DUPRÉ (pdupre@gmx.com) (LPCA/ULCO)
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.

- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
 - S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108

- **Applications:**
 - High Resolution Spectroscopy
 - Simultaneous determination of the number density and of the crossection, from a single decay (CRDS)!

- **Attention**
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.

- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
 - S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108

- **Applications:**
 - High Resolution Spectroscopy
 - Simultaneous determination of the number density and of the crosssection, from a single decay (CRDS)!

- **Attention**
 - Requiring full control of the Intracavity Power
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.

- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
 - S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108

- **Applications:**
 - High Resolution Spectroscopy
 - Simultaneous determination of the number density and of the crosssection, from a single decay (CRDS)!

- **Attention**
 - Requiring full control of the Intracavity Power
 - Modeling of the Nonlinear Interaction
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$),
- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
 - S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108

- **Applications:**
 - High Resolution Spectroscopy
 - Simultaneous determination of the number density and of the crossection, from a single decay (CRDS)!

- **Attention**
 - Requiring full control of the Intracavity Power
 - Modeling of the Nonlinear Interaction
 - **Data Weighting** (according to the noise source, see CRDS)
NonLinear Absorption by CRDS

- **First** demonstrated in 1999 (Saturated Absorption in jet cooled NO$_2$), Romanini, Dupré & Jost, in Vib. Spectros. 19, 93.

- Then,
 - P. De Natale Group (Florence) in 2010 (CO$_2$), Phys. Rev. Let. 104, 110801
 - S. Hu (Hefei) in 2017 (CO), Rev. Scient. Inst., 88, 043108

- **Applications:**
 - High Resolution Spectroscopy
 - Simultaneous determination of the number density and of the crosssection, from a single decay (CRDS)!

- **Attention**
 - Requiring full control of the Intracavity Power
 - Modeling of the Nonlinear Interaction
 - Data Weighting (according to the noise source, see CRDS)
 - Crossover Resonances
NonExponential Decay

CRDS of Jet-Cooled NO₂: Decay of the line at 12536.4464 cm\(^{-1}\) (\(^9\)R\(_0\)(0), 3/2)

\[\tau_{rd} = 136.1 \mu s \]
\[\tau_{rd} = 129.2 \mu s \]
\[\tau_{rd} = 121.8 \mu s \]
\[\tau_{rd} = 115.0 \mu s \]
\[\tau_e = 152.7 (5) \mu s \]

ROC: 0.5 m, \(L = 0.35\) m, \(w_0 = 0.246\) mm
\(T = 4.5\) ppm, \(R_F = 10\) k\(\Omega\), \(\eta = 0.55\) A/W

\[\tau_{rd} = 106.7 \mu s \]
\[\tau_{rd0} = 106.0 (1.5) \mu s \]

UnWeighted: \(\tau_0 = 275 (4) \mu s, I_{sat} = 38.8 (2.8)\) MW/m\(^2\)

Weighted: \(\tau_0 = 347 (2) \mu s, I_{sat} = 99.5 (2.5)\) MW/m\(^2\)
Saturation in NO₂ (with Fine and Hyperfine Transitions)

Power dependence of the $^4Q_{21}(0.5)$ Line Pattern

Excitation Energy (cm$^{-1}$)

Absorption (/cm)

Lineara

1.5 Wa

3 Wb

3.7 Wa

9.2 Wa

19 Wb

46 Wb

92 Wc

230 Wc

Voigt

0.5 W

1.5 W

3 W

6 W

10 W

20 W

50 W

100 W

250 W

Excitation Energy (cm$^{-1}$)
Saturation in NO$_2$ (with Fine and Hyperfine Transitions)

Power dependence of the $^q_0Q_{21}(0.5)$ Line Pattern

- Linear
 - 0.6 W
 - 1.5 W
 - 3 W
 - 3.7 W
 - 9.2 W
 - 19 W
 - 46 W
 - 92 W
 - 230 W

- Voigt
 - 0.5 W
 - 1.5 W
 - 3 W
 - 6 W
 - 10 W
 - 20 W
 - 50 W
 - 100 W
 - 250 W

Power dependence of the $^q_0R_{11}(0.5)$ Line Pattern

- Linear
 - 0.6 W
 - 1.5 W
 - 3 W
 - 3.7 W
 - 6.0 W
 - 7.5 W
 - 9.2 W
 - 15 W
 - 19 W
 - 37 W
 - 46 W
 - 92 W
 - 230 W

- Voigt
 - 0.5 W
 - 1.5 W
 - 3 W
 - 6 W
 - 10 W
 - 20 W
 - 50 W
 - 100 W
 - 250 W
Absorption versus the Intracavity Power at the Center of the $^qR_{11}(0.5)$ Line Pattern

- Experiment
- Uniform Weighting
- STD Weighting

<table>
<thead>
<tr>
<th>Running Wave Power (W)</th>
<th>Absorption (/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>2×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>3×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>4×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>5×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>6×10^{-6}</td>
<td></td>
</tr>
</tbody>
</table>

Absorption versus Intracavity Power
NICE-OHMS: History in a nutshell

Pioneerly developed at NIST (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 \(\mu \)m (Nd:YAG/Ti:Sa), cavity finesse: \(\sim 100000 \), \(\text{NEA} \sim 1 \times 10^{-14} \text{cm}^{-1}/\text{Hz} \).

Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO), more than 18 Publications (\(F \sim 50000 \)), \(\text{NEA} \sim 4 \times 10^{-13} \text{cm}^{-1}/\text{Hz} \).

Technical Developments;
2017: Whispering-Gallery-Mode Laser

Since 2010: Ben McCall (UIUC, IL), Molecular Ion (Spectroscopy), Ti:Sa (Red), DFG and OPO (MIR), Jet Expansion, cavities of modest Finesse

Since 2013, Frans Harren (Radboud Univ., Nijmegen, NL), NIR, Trace Detection

Since 2014, Livio Gianfrani (Naples Univ.): ECDL at 1.39 \(\mu \)m (H\(_2 \)O), Metrology: Boltzmann Constant, Symmetrization postulate (detec. of forbidden transition), HD?

Since 2015: Dual NICE-OHMS (CO, NIR), Shally Saraf, Robert Byer (Stanford University, CA), Metrology (Testing Lorentz Invariance, STAR Project)?

Since 2015: National Tsing Hua University (Taiwan), Quantum-Dot ECDL at 1.283 \(\mu \)m (N\(_2 \)O in Doppler), + CRDS, Atomic Parity NonConservation

Since 2016: Collaboration Dunkerque/Amsterdam (VU), Metrology of Hydrogen

Since 2017: Stefan Schäffer, Niels Bohr Institute (Copenhagen), MOT of \(^{88}\text{Sr}\) (locking against transition)
Pioneerly developed at NIST (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 μm (Nd:YAG/Ti:Sa), cavity finesse: ~ 100000, NEA ~ 1 × 10^{-14} \text{ cm}^{-1} / \sqrt{\text{Hz}}
NICE-OHMS: History in a nutshell

- **Pioneerly developed at NIST** (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 µm (Nd:YAG/Ti:Sa), cavity finesse: ~ 100000, NEA $\sim 1 \times 10^{-14} \text{ cm}^{-1} / \sqrt{\text{Hz}}$

- Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO), more than 18 Publications ($F \sim 50000$), NEA $\sim 4 \times 10^{-13} \text{ cm}^{-1} / \sqrt{\text{Hz}}$, Technical Developments; 2017: Whispering-Gallery-Mode Laser
NICE-OHMS: History in a nutshell

- **Pioneerly developed at NIST** (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 µm (Nd:YAG/Ti:Sa), cavity finessse: \(\sim 100000 \), \(\text{NEA} \sim 1 \times 10^{-14} \text{cm}^{-1} / \sqrt{\text{Hz}} \)

- Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO), more than 18 Publications (\(\mathcal{F} \sim 50000 \)), NEA \(\sim 4 \times 10^{-13} \text{cm}^{-1} / \sqrt{\text{Hz}} \), **Technical Developments**; 2017: Whispering-Gallery-Mode Laser

- Since 2010: Ben McCall (UIUC, IL), **Molecular Ion** (Spectroscopy), Ti:Sa (Red), DFG and OPO (MIR), Jet Expansion, cavities of modest Finesse
NICE-OHMS: History in a nutshell

- **Pioneerly developed at NIST** (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 μm (Nd:YAG/Ti:Sa), cavity finesse: ~ 100000, NEA ~ $1 \times 10^{-14} \text{ cm}^{-1} / \sqrt{\text{Hz}}$

- Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO), more than 18 Publications ($F \sim 50000$), NEA ~ $4 \times 10^{-13} \text{ cm}^{-1} / \sqrt{\text{Hz}}$, **Technical Developments**; 2017: Whispering-Gallery-Mode Laser

- Since 2010: Ben McCall (UIUC, IL), **Molecular Ion** (Spectroscopy), Ti:Sa (Red), DFG and OPO (MIR), Jet Expansion, cavities of modest Finesse

- **Since 2013**, Frans Harren (Radboud Univ., Nijmegen, NL), NIR, **Trace Detection**
NICE-OHMS: History in a nutshell

- **Pioneerly developed at NIST** (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 μm (Nd:YAG/Ti:Sa), cavity finesse: ~ 100000, NEA ~ 1 × 10^{-14} cm^{-1}/√Hz

- Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO), more than 18 Publications (F ~ 50000), NEA ~ 4 × 10^{-13} cm^{-1}/√Hz, **Technical Developments; 2017: Whispering-Gallery-Mode Laser**

- Since 2010: Ben McCall (UIUC, IL), **Molecular Ion** (Spectroscopy), Ti:Sa (Red), DFG and OPO (MIR), Jet Expansion, cavities of modest Finesse

- Since 2013, Frans Harren (Radboud Univ., Nijmegen, NL), NIR, **Trace Detection**

- Since 2014, Livio Gianfrani (Naples Univ.): ECDL at 1.39 μm (H_2^{18}O), **Metrology**: Boltzmann Constant, Symmetrization postulate (detec. of forbidden transition), HD?
NICE-OHMS: History in a nutshell

- **Pioneerly developed at NIST** (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 µm (Nd:YAG/Ti:Sa), cavity finesse: ~ 100000, NEA $\sim 1 \times 10^{-14} \text{ cm}^{-1}/\sqrt{\text{Hz}}$
- Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO), more than 18 Publications ($\mathcal{F} \sim 50000$), NEA $\sim 4 \times 10^{-13} \text{ cm}^{-1}/\sqrt{\text{Hz}}$, **Technical Developments**; 2017: **Whispering-Gallery-Mode Laser**
- Since 2010: Ben McCall (UIUC, IL), **Molecular Ion** (Spectroscopy), Ti:Sa (Red), DFG and OPO (MIR), Jet Expansion, cavities of modest Finesse
- Since 2013, Frans Harren (Radboud Univ., Nijmegen, NL), NIR, **Trace Detection**
- Since 2014, Livio Gianfrani (Naples Univ.): ECDL at 1.39 µm (H$_2^{18}$O), **Metrology**: Boltzmann Constant, Symmetrization postulate (detec. of forbidden transition), HD?
- Since 2015: Dual NICE-OHMS (CO, NIR), Shally Saraf, Robert Byer (Stanford University, CA), **Metrology** (Testing Lorentz Invariance, STAR Project)?
NICE-OHMS: History in a nutshell

- **Pioneerly developed at NIST** (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 μm (Nd:YAG/Ti:Sa), cavity finesse: \(\sim 1 \times 10^{-14} \text{ cm}^{-1} / \sqrt{\text{Hz}} \)

- Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO), more than 18 Publications \((F \sim 50000) \), NEA \(\sim 4 \times 10^{-13} \text{ cm}^{-1} / \sqrt{\text{Hz}} \), Technical Developments; 2017: Whispering-Gallery-Mode Laser

- Since 2010: Ben McCall (UIUC, IL), Molecular Ion (Spectroscopy), Ti:Sa (Red), DFG and OPO (MIR), Jet Expansion, cavities of modest Finesse

- Since 2013, Frans Harren (Radboud Univ., Nijmegen, NL), NIR, Trace Detection

- Since 2014, Livio Gianfrani (Naples Univ.): ECDL at 1.39 μm \((\text{H}_2\text{O}) \), Metrology: Boltzmann Constant, Symmetrization postulate (detec. of forbidden transition), HD?

- Since 2015: Dual NICE-OHMS (CO, NIR), Shally Saraf, Robert Byer (Stanford University, CA), Metrology (Testing Lorentz Invariance, STAR Project)?

- Since 2015: National Tsing Hua University (Taiwan), Quantum-Dot ECDL at 1.283 μm \((\text{N}_2\text{O} \text{ in Doppler}) \), + CRDS, Atomic Parity NonConservation
Pioneerly developed at NIST (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 µm (Nd:YAG/Ti:Sa), cavity finesse: ~ 100000, NEA ~ $1 \times 10^{-14} \text{ cm}^{-1}/\sqrt{\text{Hz}}$

Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO), more than 18 Publications ($F \sim 50000$), NEA ~ $4 \times 10^{-13} \text{ cm}^{-1}/\sqrt{\text{Hz}}$, Technical Developments; 2017: Whispering-Gallery-Mode Laser

Since 2010: Ben McCall (UIUC, IL), Molecular Ion (Spectroscopy), Ti:Sa (Red), DFG and OPO (MIR), Jet Expansion, cavities of modest Finesse

Since 2013, Frans Harren (Radboud Univ., Nijmegen, NL), NIR, Trace Detection

Since 2014, Livio Gianfrani (Naples Univ.): ECDL at 1.39 µm (H_2^{18}O), Metrology: Boltzmann Constant, Symmetrization postulate (detec. of forbidden transition), HD?

Since 2015: Dual NICE-OHMS (CO, NIR), Shally Saraf, Robert Byer (Stanford University, CA), Metrology (Testing Lorentz Invariance, STAR Project)?

Since 2015: National Tsing Hua University (Taiwan), Quantum-Dot ECDL at 1.283 µm (N_2O in Doppler), + CRDS, Atomic ParityNonConservation

Since 2016: Collaboration Dunkerque/Amsterdam (VU), Metrology of Hydrogen
NICE-OHMS: History in a nutshell

- **Pioneerly developed at NIST** (J. Hall, J. Ye), first publication in 1996 on acetylene at 1.064 μm (Nd:YAG/Ti:Sa), cavity finesse: \(\sim 100000 \), NEA \(\sim 1 \times 10^{-14} \text{ cm}^{-1} / \sqrt{\text{Hz}} \)

- Since 2007: Ove Axner group (Umeå, SW), all fibered NIR (EDFL and DFB), MIR (OPO), more than 18 Publications \((\mathcal{F} \sim 50000) \), NEA \(\sim 4 \times 10^{-13} \text{ cm}^{-1} / \sqrt{\text{Hz}} \), **Technical Developments**: 2017: Whispering-Gallery-Mode Laser

- Since 2010: Ben McCall (UIUC, IL), **Molecular Ion** (Spectroscopy), Ti:Sa (Red), DFG and OPO (MIR), Jet Expansion, cavities of modest Finesse

- Since 2013, Frans Harren (Radboud Univ., Nijmegen, NL), NIR, **Trace Detection**

- Since 2014, Livio Gianfrani (Naples Univ.): ECDL at 1.39 μm \((\text{H}_2^{18}\text{O}) \), **Metrology**: Boltzmann Constant, Symmetrization postulate (detec. of forbidden transition), HD?

- Since 2015: Dual NICE-OHMS (CO, NIR), Shally Saraf, Robert Byer (Stanford University, CA), **Metrology** (Testing Lorentz Invariance, STAR Project)?

- Since 2015: National Tsing Hua University (Taiwan), Quantum-Dot ECDL at 1.283 μm \((\text{N}_2\text{O in Doppler}) \), + CRDS, **Atomic ParityNonConservation**

- Since 2016: Collaboration Dunkerque/Amsterdam (VU), **Metrology** of Hydrogen

- Since 2017: Stefan Schäffer, Niels Bohr Institute (Copenhagen), **MOT** of \(^{88}\text{Sr}\) (locking against transition)
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption

Gaussian (Impact Parameter)
Transit-Time Broadening (vs. Power Broadening)
Approximation based on the spectral extension of products involved (⊗, ×)
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA

Establishing the Linear Absorption

Establishing the Saturated Absorption (based on the Rabi Frequency)

Plugging specific EMFs (FMS) and considering the Stationary Response
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
- Plugging specific EMFs (FMS) and considering the Stationary Response
 - Monochromatic (Radial Extension)

Numerical Integration over the Doppler Shift
Integration over the Impact Parameter
Integration over the Transit-Time Rate (Maxwell Boltzmann)
Summation of the Degenerated Zeeman Sub-Transitions (Polarization)
No Saturation Coefficient is used
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
- Plugging specific EMFs (FMS) and considering the Stationary Response
 - Monochromatic (Radial Extension)
 - Gaussian (Impact Parameter)
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
- Plugging specific EMFs (FMS) and considering the Stationary Response
 - Monochromatic (Radial Extension)
 - Gaussian (Impact Parameter)
 - Transit-Time Broadening (vs. Power Broadening)
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
- Plugging specific EMFs (FMS) and considering the Stationary Response
 - Monochromatic (Radial Extension)
 - Gaussian (Impact Parameter)
 - Transit-Time Broadening (vs. Power Broadening)
 - Approximation based on the spectral extension of products involved (⊗, ×)
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
- Plugging specific EMFs (FMS) and considering the Stationary Response
 - Monochromatic (Radial Extension)
 - Gaussian (Impact Parameter)
 - Transit-Time Broadening (vs. Power Broadening)
 - Approximation based on the spectral extension of products involved (\otimes, \times)
- Numerical Integration over the Doppler Shift
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
- Plugging specific EMFs (FMS) and considering the Stationary Response
 - Monochromatic (Radial Extension)
 - Gaussian (Impact Parameter)
 - Transit-Time Broadening (vs. Power Broadening)
 - Approximation based on the spectral extension of products involved (\otimes, \times)
- Numerical Integration over the Doppler Shift
- Integration over the Impact Parameter
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
- Plugging specific EMFs (FMS) and considering the Stationary Response
 - Monochromatic (Radial Extension)
 - Gaussian (Impact Parameter)
 - Transit-Time Broadening (vs. Power Broadening)
 - Approximation based on the spectral extension of products involved (⊗, ×)
- Numerical Integration over the Doppler Shift
- Integration over the Impact Parameter
- Integration over the Transit-Time Rate (Maxwell Boltzmann)
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
- Plugging specific EMFs (FMS) and considering the Stationary Response
 - Monochromatic (Radial Extension)
 - Gaussian (Impact Parameter)
 - Transit-Time Broadening (vs. Power Broadening)
 - Approximation based on the spectral extension of products involved (⊗, ×)
- Numerical Integration over the Doppler Shift
- Integration over the Impact Parameter
- Integration over the Transit-Time Rate (Maxwell Boltzmann)
- Summation of the Degenerated Zeeman Sub-Transitions (Polarization)
Saturation Modeling: an Insight

- Establishing the complex absorption in the Frequency domain (coupling of the EMF with the susceptibility) for a given Doppler Shift
- Solving the Liouville Equation for a (2)-level system to obtain the population and coherence terms of a specific sub-transition
- Using a perturbative approach to solve the coupled system of equations
- Applying the SVEA
- Establishing the Linear Absorption
- Establishing the Saturated Absorption (based on the Rabi Frequency)
- Plugging specific EMFs (FMS) and considering the Stationary Response
 - Monochromatic (Radial Extension)
 - Gaussian (Impact Parameter)
 - Transit-Time Broadening (vs. Power Broadening)
 - Approximation based on the spectral extension of products involved (⊗, ×)
- Numerical Integration over the Doppler Shift
- Integration over the Impact Parameter
- Integration over the Transit-Time Rate (Maxwell Boltzmann)
- Summation of the Degenerated Zeeman Sub-Transitions (Polarization)
- No Saturation Coefficient is used
Simulation and Line Profile Analysis

Saturation Analysis: C_2H_2 Transition $R(0)$ at 6558.79233 cm$^{-1}$ (polyad 10)

- **Pressure:** ~ 1.7 Pa
- **Transit-time Rate:** 160 kHz
- **Collisional Rate:** 100 kHz
- **Dipole Moment:** ~ 11 mD
- **Beam Waist:** 0.45 mm
- **Beam Power:** 10 mW
- **Doppler Broadening:** 0.00793 cm$^{-1}$

![Graph showing absorption spectra with different integration methods and parameters.](image-url)
C$_2$H$_2$ NICE-OHMS Simulation (Absorption)

NICE-OHMS in Phase, C$_2$H$_2$ Transition R(0) at 7143.8289 cm$^{-1}$ (polyad 11)

- Dipole Moment: ~ 0.912 mD
- Beam Waist: 0.46 mm
- Beam Power: 200 mW
- Modulation Frequency: 350 MHz
- Modulation Index: 0.4
- Rabi Frequency: 97.8 kHz
- Pressure: ~ 1 Pa
- Transit-time Rate: 220 kHz
- Collisional Rate: 60 kHz
- Doppler Broadening: 0.00863 cm$^{-1}$
C$_2$H$_2$ NICE-OHMS Simulation (Dispersion)

NICE-OHMS in Quadrature, C$_2$H$_2$ Transition R(0) at 7143.8289 cm$^{-1}$ (polyad 11)

- **Dipole Moment:** ~ 0.912 mD
- **Beam Waist:** 0.46 mm
- **Beam Power:** 200 mW
- **Modulation Frequency:** 350 MHz
- **Modulation Index:** 0.4
- **Mean Rabi Frequency:** 97.8 kHz

- **Pressure:** ~ 1 Pa
- **Mean Transit-time Rate:** 220 kHz
- **Collisional Rate:** 60 kHz
- **Doppler Broadening:** 0.00863 cm$^{-1}$

![Graph showing dispersion vs. wavelength with key parameters indicated.]
C₂H₂ Simulation (Dispersion): Lorentzian Component

Saturation Analysis: C₂H₂ Transition R(0) at 7143.8289 cm⁻¹ (polyad 11)

- **Dipole Moment:** 0.912 mD
- **Power:** 200 mW, **Waist:** 0.46 mm
- **Linear Polarization**
- **Modulation Index:** 0.4

Graph:
- **Lorentzian Component Width (MHz)** vs **Collision Rate (kHz)**
- **Transit-time Rate:** 220 kHz
- **Rabi Frequency:** 97.8 kHz
- **Double Integration**
- **Triple Integration**
Saturation Analysis: \(\text{C}_2\text{H}_2 \) Transition \(R(0) \) at 7143.8289 cm\(^{-1}\) (polyad 11)

- Dipole Moment: 0.912 mD
- Power: 200 mW, Waist: 0.46 mm
- Linear Polarization
- Modulation Index: 0.4

Gaussian Component Width (MHz) vs. Collision Rate (kHz)

- Double Integration
- Triple Integration

Rabi Frequency: 97.8 kHz
Transit-time Rate: 220 kHz
Phase Modulations in NICE–OHMS
Phase Modulations in NICE–OHMS
Frequency Modulation in Cavity

Phase Modulations in NICE–OHMS
Phase Modulations in NICE–OHMS
NICE-OHMS Implementation
NICE-OHMS Implementation

Laser source
ECDL

Immersed Cavity
NICE-OHMS Implementation

Laser source (ECDL) → EOM → Immersed Cavity

- Frequency Error to Voltage Converter
- PZT
- PDH
- FSR
- EOM
- PID

Frequency Error

~20 MHz
~310 MHz

Immersed Cavity

PZT

Frequency Error to Voltage Converter
NICE-OHMS Implementation

Laser source
ECDL

EOM

Immersed Cavity
PZT

ADC
Computer

f_{FSR} \sim 310 \text{ MHz}

f_{PDH} \sim 20\text{ MHz}
NICE-OHMS Implementation

Immersed Cavity

Frequency Error to Voltage Converter

PZT

Laser source (ECDL)

ADC

Computer

Lockin Amplifier

f_{mod.}

f_{FSR} \sim 310 \text{ MHz}

f_{PDH} \sim 20 \text{ MHz}

EOM

Immersed Cavity

PID

I
NICE-OHMS Implementation

- Laser source: ECDL
- Optical Frequency Comb
- Cs clock, 10^{-13} accuracy
- Beatnote unit
- Counter
- Frequency Error to Voltage Converter
- Lockin Amplifier
- ADC Computer
- Immerged Cavity

Key frequencies:
- \(f_{\text{PDH}} \approx 20 \text{MHz} \)
- \(f_{\text{FSR}} \approx 310 \text{ MHz} \)
- \(f_{\text{PDH}} \approx 20 \text{MHz} \)
- \(f_{\text{ref}} \)
- \(f_{\text{beat}} \)
- \(f_{\text{mod.}} \)
Direct Absorption of C$_2$H$_2$ (P 11, $\nu_1 + \nu_2 + (2\nu_4 + \nu_5)^1 \leftarrow 0$)

C$_2$H$_2$, Transition $R_e(4)$ (7239.79077 cm$^{-1}$), Direct Absorption at 7 µbar

Intra-Cavity Power (W)

Transit-Time Rate: 222 kHz
Dip. Moment.: 0.482 mD

L_{eq}: ~27.2 km
Direct Absorption of C$_2$H$_2$ (P 11, $\nu_1 + \nu_2 + (2\nu_4 + \nu_5)^1 \leftarrow 0$)

C$_2$H$_2$, Transition $R_e(4)$ (7239.79077 cm$^{-1}$), Direct Absorption at 7 µbar

Transit-Time Rate: 222 kHz
Dip. Moment.: 0.482 mD

L_{eq}: ~27.2 km
Doppler: 519.7 (6) MHz
HWHM: 363 (71) kHz
Doppler: 519.7 (6) MHz
Direct Absorption of C$_2$H$_2$ (P 11, $\nu_1 + \nu_2 + (2\nu_4 + \nu_5)^1 \leftarrow 0$)

C$_2$H$_2$, Transition $R_e(4)$ (7239.79077 cm$^{-1}$), Direct Absorption at 7 µbar

Transit-Time Rate: 222 kHz
Dip. Moment.: 0.482 mD

HWHM: 363 (71) kHz

Doppler: 519.7 (6) MHz

L_{eq}: ~27.2 km

Absorbance
Intra-Cavity Power (W)

Detuning (MHz)
NICE-OHMS “Absorption” of C$_2$H$_2$ (Polyad 11)

C$_2$H$_2$, Transition $R_e(4)$ (7239.79077 cm$^{-1}$), NICE-OHMS in Phase at 7 µbar

Intra-Cavity Power: ~39 W
Freq. Mod.: 311.741 MHz (Mod. Index: 0.3)
Effective μ_{band}: 0.482 mD
Transit-Time Rate: 222 kHz

$\Gamma_L = 341 (4)$ kHz
NICE-OHMS “Dispersion” of C$_2$H$_2$ (Polyad 11)

C$_2$H$_2$, Transition $R_e(4)$ (7239.79077 cm$^{-1}$), NICE-OHMS in Quadrature at 7 µbar

Intra-Cavity Power: ~39 W
FSR: 311.741 MHz (Mod. Index: 0.3)
Effective μ_{band}: 0.482 mD
Transit-Time Rate: 222 kHz

$\Gamma_L = 393 (4)$ kHz
NICE-OHMS Dispersion of C$_2$H$_2$ (Polyad 11) with OFC

C$_2$H$_2$, Transition R_e(4) (7239.79077 cm$^{-1}$), NICE-OHMS in Quadrature at 2 μbar

No Dithering

Dithering 1f (596.5 Hz?)

Dithering 2f

$\nu_0 = 217043458142$ (15) kHz
$\Gamma = 314.4$ (12.4) kHz

$\nu_0 = 217043458145$ (3.8) kHz
$\Gamma = 318.7$ (3.9) kHz

$\nu_0 = 217043458130$ (4.9) kHz
$\Gamma = 316.8$ (4.9) kHz
Resonance Width Power Dependence

Power Broadening, NICE-OHMS of C_2H_2, Transition R_2, $\nu_1 + \nu_2 + (2\nu_4 + \nu_5)^1$
Outline

1. Motivations
2. Introduction to CEAS
3. Absorption in Cavity
4. Saturated Absorption: Modeling and Simulations
5. NICE-OHMS: Principles and Implementation
6. C$_2$H$_2$ in the NIR
7. HD in the NIR (Forbidden Transition)
8. Bibliography
9. Conclusions
Simulation of HD: First Overtone, Transition $R(0)$

- Excitation Energy (cm$^{-1}$)
- "Dispersion" for 1 cm
- Linear
- 2 MHz

Graph showing the dispersion for 1 cm with excitation energy in cm$^{-1}$.
1-f WM-NICE-OHMS: HD Transition R_1 of the 1st Overtone (1 Pa)

Intracavity Power: ~ 138 W
Cavity Finesse: ~ 125000
$L_{eq} \sim 75$ km
HD Ground State: Hyperfine Energy Levels for N~1

According to Ramsey and Lewis
Discussion on HD (Work in Progress)

Improvement by 3 Orders of Magnitude

R₁, R₂, R₃ observed

Sensitivity ∼ 10^{-12} cm⁻¹

Resonance Line Shape (Asymmetry)?

Mean Transit-Time Rate: ∼ 660 kHz

Rabi Frequency (∼ 21 kHz)?

Recoil (∼ 35 kHz)?

Evidence of the Hyperfine Structure (spreads over 600 kHz)?

Pressure Broadening Coefficient?

Pressure Shift?

Comparison with CRDS (S. Hu group, in PRL)
Discussion on HD (Work in Progress)

- Improvement by 3 Orders of Magnitude

Improvement by 3 Orders of Magnitude

$R(1), R(2), R(3)$ observed
Discussion on HD (Work in Progress)

- Improvement by 3 Orders of Magnitude
- $R(1), R(2), R(3)$ observed
- Sensitivity $\sim 10^{-12}$ cm$^{-1}$
Discussion on HD (Work in Progress)

- Improvement by 3 Orders of Magnitude
- $R(1)$, $R(2)$, $R(3)$ observed
- Sensitivity $\sim 10^{-12}$ cm$^{-1}$
- Resonance Line Shape (Asymmetry)?
Discussion on HD (Work in Progress)

- Improvement by 3 Orders of Magnitude
- $R(1), R(2), R(3)$ observed
- Sensitivity $\sim 10^{-12} \text{ cm}^{-1}$
- Resonance Line Shape (Asymmetry)?
 - Mean Transit-Time Rate: $\sim 660 \text{ kHz}$
Discussion on HD (Work in Progress)

- Improvement by 3 Orders of Magnitude
- $R(1)$, $R(2)$, $R(3)$ observed
- Sensitivity $\sim 10^{-12}$ cm$^{-1}$
- Resonance Line Shape (Asymmetry)?
 - Mean Transit-Time Rate: ~ 660 kHz
 - Rabi Frequency (~ 21 kHz)?
Discussion on HD (Work in Progress)

- Improvement by 3 Orders of Magnitude
- $R(1)$, $R(2)$, $R(3)$ observed
- Sensitivity $\sim 10^{-12}$ cm$^{-1}$
- Resonance Line Shape (Asymmetry)?
 - Mean Transit-Time Rate: ~ 660 kHz
 - Rabi Frequency (~ 21 kHz)?
 - Recoil (~ 35 kHz)?
New Transition Frequency: 217.105 181 891 (15) THz, \(< 1 \times 10^{-10}\),
(published value: 217.105 192 (30) THz [Kassi/Campargue JMS, 2011])

Improvement by 3 Orders of Magnitude

\(R(1), R(2), R(3)\) observed

Sensitivity \(\sim 10^{-12} \text{ cm}^{-1}\)

Resonance Line Shape (Asymmetry)?
- Mean Transit-Time Rate: \(\sim 660 \text{ kHz}\)
- Rabi Frequency (\(\sim 21 \text{ kHz}\))?
- Recoil (\(\sim 35 \text{ kHz}\))?
- Evidence of the Hyperfine Structure (spreads over 600 kHz)?

- Improvement by 3 Orders of Magnitude
- $R(1), R(2), R(3)$ observed
- Sensitivity $\sim 10^{-12} \text{ cm}^{-1}$
- Resonance Line Shape (Asymmetry)?
 - Mean Transit-Time Rate: $\sim 660 \text{ kHz}$
 - Rabi Frequency ($\sim 21 \text{ kHz}$)?
 - Recoil ($\sim 35 \text{ kHz}$)?
 - Evidence of the Hyperfine Structure (spreads over 600 kHz)?

- Pressure Broadening Coefficient?
Discussion on HD (Work in Progress)

- New Transition Frequency: \(217.105 \, 181 \, 891 \, (15) \, \text{THz} \), \(< 1 \times 10^{-10} \),
 (published value: \(217.105 \, 192 \, (30) \, \text{THz} \) [Kassi/Campargue JMS, 2011])
- Improvement by 3 Orders of Magnitude
- \(R(1) \), \(R(2) \), \(R(3) \) observed
- Sensitivity \(\sim 10^{-12} \, \text{cm}^{-1} \)
- Resonance Line Shape (Asymmetry)?
 - Mean Transit-Time Rate: \(\sim 660 \, \text{kHz} \)
 - Rabi Frequency (\(\sim 21 \, \text{kHz} \))?
 - Recoil (\(\sim 35 \, \text{kHz} \))?
 - Evidence of the Hyperfine Structure (spreads over 600 kHz)?
- Pressure Broadening Coefficient?
- Pressure Shift?
Discussion on HD (Work in Progress)

- Improvement by 3 Orders of Magnitude
- $R(1)$, $R(2)$, $R(3)$ observed
- Sensitivity $\sim 10^{-12}$ cm$^{-1}$
- Resonance Line Shape (Asymmetry)?
 - Mean Transit-Time Rate: ~ 660 kHz
 - Rabi Frequency (~ 21 kHz)?
 - Recoil (~ 35 kHz)?
 - Evidence of the Hyperfine Structure (spreads over 600 kHz)?
- Pressure Broadening Coefficient?
- Pressure Shift?
- Comparison with CRDS (S. Hu group, in PRL)

Improvement by 3 Orders of Magnitude

$R(1), R(2), R(3)$ observed

Sensitivity $\sim 10^{-12} \text{ cm}^{-1}$

Resonance Line Shape (Asymmetry)?
 - Mean Transit-Time Rate: $\sim 660 \text{ kHz}$
 - Rabi Frequency ($\sim 21 \text{ kHz}$)?
 - Recoil ($\sim 35 \text{ kHz}$)?
 - Evidence of the Hyperfine Structure (spreads over 600 kHz)?

Pressure Broadening Coefficient?

Pressure Shift?

Comparison with CRDS (S. Hu group, in PRL)
Bibliography

- Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy, Sensors, 10, 1716 (2010)
Outline

1. Motivations
2. Introduction to CEAS
3. Absorption in Cavity
4. Saturated Absorption: Modeling and Simulations
5. NICE-OHMS: Principles and Implementation
6. C\textsubscript{2}H\textsubscript{2} in the NIR
7. HD in the NIR (Forbidden Transition)
8. Bibliography
9. Conclusions
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
- Work in Progress
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
- Work in Progress
- An Innovative Technique, even to Saturate weak Transitions
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
- Work in Progress
- An Innovative Technique, even to Saturate weak Transitions
- HD: $R(0)$, $P(1)$, etc.

Higher Finesse: from ~ 125000 to 500000?

Full Validation of the NICE-OHMS Technique on C_2H_2

Saturation Model Validation?

Line Shape asymmetries: Role of the Hyperfine Structure?

Resonance Narrowing?

Sub-kHz Precision Range?

Etc.
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
- Work in Progress
- An Innovative Technique, even to Saturate weak Transitions
- HD: $R(0)$, $P(1)$, etc..
- Higher Finesse: from $\sim 125\,000$ to $500\,000$?
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
- Work in Progress
- An Innovative Technique, even to Saturate weak Transitions
- HD: $R(0)$, $P(1)$, etc..
- Higher Finesse: from ~ 125 000 to 500 000?
- Full Validation of the NICE-OHMS Technique on C$_2$H$_2$
- Comparing NICE-OHMS vs CRDS
- Work in Progress
- An Innovative Technique, even to Saturate weak Transitions
- HD: $R(0)$, $P(1)$, etc..
- Higher Finesse: from $\sim 125\,000$ to $500\,000$?
- Full Validation of the NICE-OHMS Technique on C_2H_2
- Saturation Model Validation?
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
- Work in Progress
- An Innovative Technique, even to Saturate weak Transitions
- HD: $R(0)$, $P(1)$, etc..
- Higher Finesse: from $\sim 125\,000$ to $500\,000$?
- Full Validation of the NICE-OHMS Technique on C_2H_2
- Saturation Model Validation?
- Line Shape asymmetries: Role of the Hyperfine Structure?
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
- Work in Progress
- An Innovative Technique, even to Saturate weak Transitions
- HD: $R(0)$, $P(1)$, etc..
- Higher Finesse: from $\sim 125\,000$ to $500\,000$?
- Full Validation of the NICE-OHMS Technique on C$_2$H$_2$
- Saturation Model Validation?
- Line Shape asymmetries: Role of the Hyperfine Structure?
- Resonance Narrowing?
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
- Work in Progress
- An Innovative Technique, even to Saturate weak Transitions
- HD: $R(0)$, $P(1)$, etc..
- Higher Finesse: from $\sim 125\,000$ to $500\,000$?
- Full Validation of the NICE-OHMS Technique on C_2H_2
- Saturation Model Validation?
- Line Shape asymmetries: Role of the Hyperfine Structure?
- Resonance Narrowing?
- Sub-kHz Precision Range?
Conclusions (NICE-OHMS in Amsterdam)

- Comparing NICE-OHMS vs CRDS
- Work in Progress
- An Innovative Technique, even to Saturate weak Transitions
- HD: $R(0), P(1), \text{etc..}$
- Higher Finesse: from $\sim 125\,000$ to $500\,000$?
- Full Validation of the NICE-OHMS Technique on C_2H_2
- Saturation Model Validation?
- Line Shape asymmetries: Role of the Hyperfine Structure?
- Resonance Narrowing?
- Sub-kHz Precision Range?
- Etc..
Thank for your Attention