Modeling Polarization for Phase Retrieval

Presented by:

OSA Polarization Technical Group
Modeling Polarization for Phase Retrieval

Scott Paine
Outline

• Introduction to phase retrieval wavefront sensing
 • Gerchberg-Saxton methods
 • Nonlinear optimization
• Building a phase retrieval model
 • Scalar wavefront theory
 • Backpropagating error
• Incorporating polarization aberrations
 • Jones pupil
 • PSM
 • Pauli-Zernike coefficients
• Full Model for Polarization
Wavefront Sensing

- Want to recover unknown wavefront using PSF image

\[A(u, v) \text{ (known)} \]

\[W(u, v) \text{ (unknown)} \]

Observed PSF (with noise)

Optical Propagation & Detection
Wavefront Sensing

- Known quantities
 - Pupil function
 - Possibly prior wavefront knowledge (i.e. known defocus)
 - Sampling

- Measured quantities
 - PSF Intensity
Gerchberg-Saxton Algorithm

Known

Pupil Function

Image Amplitude ($=\sqrt{PSF}$)
Gerchberg-Saxton Algorithm

START

Pupil Function

Random Phase

Propagate to image plane

Amplitude

Phase

Replace amplitude with \sqrt{PSF}

Amplitude

Phase

Propagate back to pupil plane

Replace amplitude with Pupil Function

\sqrt{PSF}

Phase
Gerchberg-Saxton Phase

Truth

Iteration 0
Gerchberg-Saxton Phase

Truth

Iteration 1
Gerchberg-Saxton Phase

Truth

Iteration 2
Gerchberg-Saxton Phase

Truth

Iteration 3
Gerchberg-Saxton Phase

Truth

Iteration 4
Gerchberg-Saxton Phase

Truth

Iteration 5
Gerchberg-Saxton Phase

Truth

Iteration 6
Gerchberg-Saxton Phase

Truth

Iteration 7
Gerchberg-Saxton Phase

Truth

Iteration 8
Gerchberg-Saxton Phase

Truth

Iteration 9
Gerchberg-Saxton Phase

Truth

Iteration 10
Gerchberg-Saxton Phase

Truth

Iteration 11
Gerchberg-Saxton Phase

Truth

Iteration 12
Gerchberg-Saxton Phase

Truth

Iteration 13
Gerchberg-Saxton Phase

Truth

Iteration 14
Gerchberg-Saxton Phase

Truth

Iteration 15
Gerchberg-Saxton Phase

Truth

Iteration 16
Gerchberg-Saxton Phase

Truth

Iteration 17
Gerchberg-Saxton Phase

Truth

Iteration 18
Gerchberg-Saxton Phase

Truth

Iteration 19
Gerchberg-Saxton Phase

Truth

Iteration 20
Gerchberg-Saxton Phase

Truth

Iteration 21
Gerchberg-Saxton Phase

Truth

Iteration 22
Gerchberg-Saxton Phase

Truth

Iteration 23
Gerchberg-Saxton Phase

Truth

Iteration 24
Gerchberg-Saxton Phase

Truth

Iteration 26
Gerchberg-Saxton Phase

Normalized RMS error on generated PSF versus iteration for Gerchberg-Saxton Phase Retrieval
Gerchberg-Saxton Phase

Found PSF
Gerchberg-Saxton Phase

Data PSF
Gerchberg-Saxton problems

• Overfitting
 • Including noise in PSF update causes “quilting” in phase
 • Can attempt to fix by projecting phase onto polynomial basis

• Error not guaranteed to decrease
 • Generally, error will decrease, but error measurement is not coupled to update
Nonlinear Optimization

• Create a physical modelling function
 • Input is parameters to be optimized
 • Output is single-value cost function to decrease
 • MSE
 • NRMSE
 • Bias-and-gain invariant NMSE [1]

• Obtain search direction
 • Gradient-based methods
 • Finite differences
 • Algorithmic differentiation
 • Stochastic methods also exist

• Update parameters using search direction

Finite Differences

- Approximate gradient using small steps:

\[
\frac{\partial E}{\partial x_i} \approx \frac{f(\vec{x} + \vec{\delta}_i(\epsilon)) - f(\vec{x})}{\epsilon}
\]

- \(\vec{x} \) is the current estimate of the parameters, represented as an array
- \(\vec{\delta}_i(\epsilon) \) is an array that is zero everywhere except for \(i \), where it has a value of \(\epsilon \)
 - \(\epsilon \) is known as “step size”
- Requires many evaluations of modelling function
 - Can only “probe” one parameter at a time
Finite Differences

- Good for functions that have few parameters, non-analytical functions, and a fast physical model

- Fall apart for functions with many parameters
 - Complexity scales with number of input parameters
Algorithmic Differentiation

• Use chain rule to determine gradients:

\[\frac{\partial E}{\partial x_i} = \frac{\partial E}{\partial f} \frac{\partial f}{\partial x_i} \]
Algorithmic Differentiation Example

- Forward:

 \[g_n = \cos(4 a_n) \]

 \[m_n = g_n^2 \]

 \[l_n = \exp\left(-\frac{m_n}{2}\right) \]

 \[E = \sum_n (l_n - D_n)^2 \]

- Reverse (note that \(\bar{y} \) indicates derivative of \(y \) with respect to \(E \)):

 \[\bar{l}_n = 2(l_n - D_n) \]

 \[\bar{m}_n = \bar{l}_n \left[-\frac{1}{2} \exp\left(-\frac{m_n}{2}\right)\right] \]

 \[\bar{g}_n = \bar{m}_n(2g_n) \]

 \[\bar{a}_n = \bar{g}_n[-4 \sin(4a_n)] \]
Algorithmic Differentiation

• Modular
 • Including another function means including another gradient step
 • Removing a function means removing a gradient step

• Exact
 • Derived from analytic equations
 • Holds as long at functions are differentiable

• Efficient
 • Requires fewer calculations than finite differences
Algorithmic Differentiation

- Derivatives for common operations with complex operations have been published by Jurling et al [2]
 - Fourier transforms
 - Basis set expansion
 - Complex exponentiation

Building a Scalar Phase Retrieval Model

- Use wave theory to propagate field from pupil plane to image plane
 - Pupil plane contains total pupil function, total wavefront error from entire system
 - Computationally simple

- Use wave theory to propagate to each surface individually
 - Each surface has contributing pupil function, wavefront error
 - More computationally complex
Pupil plane

• Wavefront
 • Best expressed via basis set such as Zernikes – prevents fitting to noise
 • Can include point-by-point wavefront in addition to Zernike basis to fit higher-order features

• Amplitude
 • Most simply the pupil function of the system
 • Can also express as sum of Zernikes for non-uniform illumination
Propagation

- Must have sampling information of system, establish sampling quotient:

\[Q = \frac{\lambda (\frac{f}{\#})}{d_x} \]

- \(\lambda \) is wavelength, \(d_x \) is pixel pitch of detector plane, \(\frac{f}{\#} \) is f-number of system
- \(Q = 2 \) is Nyquist sampling in detector plane, \(Q < 2 \) can lead to aliasing in simulation, \(Q > 2 \) is an oversampled detector
- Pad pupil plane with zeros to size \(P = Q N \), where \(N \) is the size of one side of a square array that just encapsulated the entire pupil function
 - Crop intensity in image plane to size of detector window
Scalar Phase Retrieval Example (from [2])

<table>
<thead>
<tr>
<th>Step</th>
<th>Forward Model</th>
<th>Reverse Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Express wavefront with Zernikes</td>
<td>$W(u, v) = \sum_n a_n Z_n(u, v)$</td>
<td>$\alpha_n = \sum_{u,v} \bar{W}(u, v)Z_n(u, v)$</td>
</tr>
<tr>
<td>Create field with pupil function and wavefront</td>
<td>$g(u, v) = A(u, v) \exp \left[i \frac{2\pi}{\lambda} W(u, v) \right]$</td>
<td>$\bar{W}(u, v) = \frac{2\pi}{\lambda} 3{g(u, v)g^*(u, v)}$</td>
</tr>
<tr>
<td>Propagate field to image plane</td>
<td>$G(\xi, \eta) = \mathcal{F}_{u\rightarrow \xi} {g(u, v)}$</td>
<td>$\tilde{g}(u, v) = \mathcal{F}_{\xi \rightarrow u} {\tilde{G}(\xi, \eta)}$</td>
</tr>
<tr>
<td>Take modulus of image plane to obtain intensity</td>
<td>$I(\xi, \eta) =</td>
<td>G(\xi, \eta)</td>
</tr>
<tr>
<td>Take weighted sum of square differences for cost function</td>
<td>$E = \sum_{\xi, \eta} w(\xi, \eta)[I(\xi, \eta) - D(\xi, \eta)]^2$</td>
<td>$\tilde{I}(\xi, \eta) = 2w(\xi, \eta)[I(\xi, \eta) - D(\xi, \eta)]$</td>
</tr>
</tbody>
</table>
Tips for Reverse Model Formulation

- Ensure that dimensionality matches (e.g. \bar{I} should be 2-dimensional)
- Ensure that real outputs have real gradients, complex outputs have complex gradients
 - \bar{G} should be complex, but \bar{W} should be entirely real-valued
- Use finite differences to ensure that gradients are correct
 - Difference between algorithmic differentiation and finite differences should be on the same order of magnitude as step size ϵ
Incorporating polarization aberrations

- Scalar model cannot account for polarization aberrations
 - Polarizing elements in system
 - Reflective elements with light coming in near Brewster’s angle
 - Birefringence
- Use combination of methods from Breckinridge et al in [3], Yamamoto et al in [4]

Jones Pupils

• For each sampled spatial point in arbitrary pupil plane, there is a Jones matrix
 • Describes how polarized light evolves in the system for that spatial point
• Create 2x2 array of pupil planes:

\[
\begin{pmatrix}
J_{XX}(u, v) & J_{XY}(u, v) \\
J_{YX}(u, v) & J_{YY}(u, v)
\end{pmatrix}
\]

• For a given \(J_{ij}\), \(i\) is output polarization state and \(j\) is input polarization state
Example: Jones Pupils for Wide-Field Interferometric Telescope (WFIRST)

- Obtained from raytrace of on-axis field point

\[
|J_{XX}| \quad |J_{YY}| \quad \phi_{XX} \quad \phi_{YY}
\]

\[
|J_{XY}| \quad |J_{YX}| \quad \phi_{XY} \quad (waves) \quad \phi_{YX} \quad (waves)
\]
Amplitude Response Matrix (ARM)

- Formed by propagating each Jones pupil element separately to image plane:

\[
\begin{pmatrix}
J_{XX}(u, v) & J_{XY}(u, v) \\
J_{YX}(u, v) & J_{YY}(u, v)
\end{pmatrix}
\xrightarrow{\mathcal{F}_{u \rightarrow \xi}, \mathcal{F}_{v \rightarrow \eta}}
\begin{pmatrix}
ARM_{XX}(\xi, \eta) & ARM_{XY}(\xi, \eta) \\
ARM_{YX}(\xi, \eta) & ARM_{YY}(\xi, \eta)
\end{pmatrix}
\]

- Propagation performed the same as with scalar theory
Point-Spread Matrix (PSM)

- Entirely real-valued

- For each spatial point (ξ, η), use methodology to turn Jones matrix into Mueller matrix using ARM components [5]

PSM for WFIRST

\[
\begin{pmatrix}
PSM_{11} & PSM_{12} & PSM_{13} & PSM_{14} \\
PSM_{21} & PSM_{22} & PSM_{23} & PSM_{24} \\
PSM_{31} & PSM_{32} & PSM_{33} & PSM_{34} \\
PSM_{41} & PSM_{42} & PSM_{43} & PSM_{44}
\end{pmatrix}
\]
PSF Formulation

- Multiplying PSM by a Stokes vector will give length 4 vector of real-valued arrays
 - First element is total intensity
 - Remaining 3 elements are indicative of degree of X/Y, 45/135, and R/L polarization

- For formulating intensity, we only need a weighted sum of first four PSM elements
PSF Formulation

\[
PSM_{11}(\xi, \eta) = \frac{1}{2} \left[|ARM_{XX}(\xi, \eta)|^2 + |ARM_{YY}(\xi, \eta)|^2 + |ARM_{YX}(\xi, \eta)|^2 + |ARM_{XY}(\xi, \eta)|^2 \right]
\]

\[
PSM_{12}(\xi, \eta) = \frac{1}{2} \left[|ARM_{XX}(\xi, \eta)|^2 - |ARM_{YY}(\xi, \eta)|^2 + |ARM_{YX}(\xi, \eta)|^2 - |ARM_{XY}(\xi, \eta)|^2 \right]
\]

\[
PSM_{13}(\xi, \eta) = \Re\{ARM_{XX}(\xi, \eta)ARM_{XY}^*(\xi, \eta)\} + \Re\{ARM_{YX}(\xi, \eta)ARM_{YY}^*(\xi, \eta)\}
\]

\[
PSM_{14}(\xi, \eta) = -\Im\{ARM_{XX}^*(\xi, \eta)ARM_{XY}(\xi, \eta)\} - \Im\{ARM_{YX}^*(\xi, \eta)ARM_{YY}(\xi, \eta)\}
\]

\[
I(\xi, \eta) = \sum_n S_n PSM_{1n}(\xi, \eta)
\]
Pauli-Zernike Coefficients

- Jones pupil is difficult to separate into scalar and polarization-specific aberrations
- At each spatial point \((u, v)\), decompose Jones matrix using Pauli matrices to obtain spatial coefficients, known as Pauli pupils:

\[
J(u, v) = \sum_n a_n(u, v)\sigma_n
\]

\[
\begin{align*}
\sigma_0 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \sigma_1 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\
\sigma_2 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & \sigma_3 &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\end{align*}
\]
Pauli-Zernike Coefficients

For a Jones matrix at a given spatial point \((u, v)\):

\[
a_0(u, v) = \frac{J_{XX}(u, v) + J_{YY}(u, v)}{2}
\]
\[
a_1(u, v) = \frac{J_{XX}(u, v) - J_{YY}(u, v)}{2}
\]
\[
a_2(u, v) = \frac{J_{YX}(u, v) + J_{XY}(u, v)}{2}
\]
\[
a_3(u, v) = \frac{J_{YX}(u, v) - J_{XY}(u, v)}{2i}
\]
Pauli-Zernike Coefficients

- Converting back is simple:

\[J_{XX}(u, v) = a_0(u, v) + a_1(u, v) \]
\[J_{YY}(u, v) = a_0(u, v) - a_1(u, v) \]
\[J_{XY}(u, v) = a_2(u, v) - i a_3(u, v) \]
\[J_{YX}(u, v) = a_2(u, v) + i a_3(u, v) \]
Pauli-Zernike coefficients

- Amplitude and phase of a_0 is the amplitude and phase of the system with no polarization aberrations
 - If $a_1 = a_2 = a_3 = 0, J_{XX} = J_{YY} = a_0$, and $J_{XY} = J_{YX} = 0$
 - Thus, $ARM_{XX} = ARM_{YY} = \mathcal{F}\{a_0\}$, $ARM_{XY} = ARM_{YX} = 0$
 - $PSM_{11} = \frac{1}{2} (|ARM_{XX}|^2 + |ARM_{YY}|^2 + |ARM_{XY}|^2 + |ARM_{YX}|^2) = |\mathcal{F}\{a_0\}|^2$
 - $PSM_{12} = \frac{1}{2} (|ARM_{XX}|^2 - |ARM_{YY}|^2 + |ARM_{XY}|^2 - |ARM_{YX}|^2) = 0$
 - $PSM_{13} = \Re(ARM_{XX}ARM_{YX}^*) + \Re(ARM_{YX}ARM_{XX}^*) = 0$
 - $PSM_{14} = -\Im(ARM_{XX}^*ARM_{YX}) - \Im(ARM_{YX}^*ARM_{XX}) = 0$
- Regardless of Stokes vector, total intensity will simply be $|\mathcal{F}\{a_0\}|^2$, which is scalar wavefront theory
Pauli-Zernike coefficients

- Each Pauli matrix corresponds to an eigenpolarization state:
 - σ_0 has unpolarized eigenvectors (degenerate)
 - σ_1 has X/Y linearly polarized eigenvectors
 - σ_2 has 45/135 deg. linearly polarized eigenvectors
 - σ_3 has circularly polarized eigenvectors
Pauli-Zernike coefficients

- Represent amplitude and phase of a_0 using Zernike decomposition
 - Same as scalar model

- For a_1, a_2, and a_3, represent real and imaginary parts using Zernike decomposition

- Can perform simulation with known amounts of polarization
 - Can parameterize polarization aberration using Zernike coefficients for optimization purposes

- Can adjust scalar wave phase and amplitude independently of polarization effects
WFIRST Pauli Pupils

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaginary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amplitude:
- a_0: 0.8
- a_1: 0.025
- a_2: 0.03
- a_3: 0.005

Phase (waves):
- a_0: 0.25
- a_1: 0.04
- a_2: 0.015
- a_3: 0.003

Imaginary:
- a_0: -0.035
- a_1: -0.045
- a_2: -0.03
- a_3: -0.005
WFIRST Pauli Pupils

Graphs showing the magnitudes of real and imaginary Zernike polynomials for different pupil numbers.
Total Forward Model – Pauli Zernike-Coefficients

- We have a set of Zernike coefficients c_{mn} where n corresponds to Zernike index and m corresponds to the Pauli pupils as follows:

<table>
<thead>
<tr>
<th>m</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Amplitude of a_0</td>
</tr>
<tr>
<td>1</td>
<td>Phase of a_0</td>
</tr>
<tr>
<td>2</td>
<td>$\Re{a_1}$</td>
</tr>
<tr>
<td>3</td>
<td>$\Im{a_1}$</td>
</tr>
<tr>
<td>4</td>
<td>$\Re{a_2}$</td>
</tr>
<tr>
<td>5</td>
<td>$\Im{a_2}$</td>
</tr>
<tr>
<td>6</td>
<td>$\Re{a_3}$</td>
</tr>
<tr>
<td>7</td>
<td>$\Im{a_3}$</td>
</tr>
</tbody>
</table>
Total Forward Model – Generating a_0

\[A(u, v) = \sum_n c_{0n}Z_n(u, v) \]

\[\phi(u, v) = \frac{2\pi}{\lambda} \sum_n c_{1n}Z_n(u, v) \]

\[a_0(u, v) = A(u, v) \exp[i\phi(u, v)] \]
Total Forward Model – Other Pauli Pupils

\[a_1(u, v) = \left[\sum_n c_{2n} Z_n(u, v) \right] + i \left[\sum_n c_{3n} Z_n(u, v) \right] \]

\[a_2(u, v) = \left[\sum_n c_{4n} Z_n(u, v) \right] + i \left[\sum_n c_{5n} Z_n(u, v) \right] \]

\[a_3(u, v) = \left[\sum_n c_{6n} Z_n(u, v) \right] + i \left[\sum_n c_{7n} Z_n(u, v) \right] \]
Total Forward Model – Pauli to Jones Conversion

\[
J_{XX}(u, v) = a_0(u, v) + a_1(u, v)
\]

\[
J_{YY}(u, v) = a_0(u, v) - a_1(u, v)
\]

\[
J_{XY}(u, v) = a_2(u, v) - ia_3(u, v)
\]

\[
J_{YX}(u, v) = a_2(u, v) + ia_3(u, v)
\]
Total Forward Model - Propagation

\[
\begin{pmatrix}
J_{XX}(u, v) & J_{XY}(u, v) \\
J_{YX}(u, v) & J_{YY}(u, v)
\end{pmatrix} \xrightarrow{F_{u \rightarrow \xi}} \begin{pmatrix}
ARM_{XX}(\xi, \eta) & ARM_{XY}(\xi, \eta) \\
ARM_{YX}(\xi, \eta) & ARM_{YY}(\xi, \eta)
\end{pmatrix}
\]
Total Forward Model – Forming the PSM

\[PSM_{11}(\xi, \eta) = \frac{1}{2} \left[|ARM_{XX}(\xi, \eta)|^2 + |ARM_{YY}(\xi, \eta)|^2 + |ARM_{YX}(\xi, \eta)|^2 + |ARM_{XY}(\xi, \eta)|^2 \right] \]

\[PSM_{12}(\xi, \eta) = \frac{1}{2} \left[|ARM_{XX}(\xi, \eta)|^2 - |ARM_{YY}(\xi, \eta)|^2 + |ARM_{YX}(\xi, \eta)|^2 - |ARM_{XY}(\xi, \eta)|^2 \right] \]

\[PSM_{13}(\xi, \eta) = \Re \{ARM_{XX}(\xi, \eta)ARM_{XY}^*(\xi, \eta)\} + \Re \{ARM_{YX}(\xi, \eta)ARM_{YY}^*(\xi, \eta)\} \]

\[PSM_{14}(\xi, \eta) = -\Im \{ARM_{XX}^*(\xi, \eta)ARM_{XY}(\xi, \eta)\} - \Im \{ARM_{YX}^*(\xi, \eta)ARM_{YY}(\xi, \eta)\} \]
Total Forward Model – Weighted Stokes Summation

\[I(\xi, \eta) = \sum_n S_n PSM_{1n}(\xi, \eta) \]

- From here, we have PSF intensity, which can be fed into a metric to obtain our error metric value
- Value of \(\bar{I}(\xi, \eta) \) dependent on metric choice
Total Reverse Model – Gradients for Stokes and PSM components

\[
PSM_{1n}(\xi, \eta) = S_n \bar{I}(\xi, \eta)
\]

\[
S_n = \sum_{\xi, \eta} PSM_{1n}(\xi, \eta) \bar{I}(\xi, \eta)
\]
Total Reverse Model – Gradient for ARM

\[\overline{ARM}_{XX} = ARM_{XX}[PSM_{11} + \overline{PSM}_{12}] + ARM_{XY}[\overline{PSM}_{13} + i\overline{PSM}_{14}] \]

\[\overline{ARM}_{YY} = ARM_{YY}[PSM_{11} - \overline{PSM}_{12}] + ARM_{YX}[\overline{PSM}_{13} - i\overline{PSM}_{14}] \]

\[\overline{ARM}_{XY} = ARM_{XY}[PSM_{11} - \overline{PSM}_{12}] + ARM_{XX}[\overline{PSM}_{13} - i\overline{PSM}_{14}] \]

\[\overline{ARM}_{YX} = ARM_{YX}[PSM_{11} + \overline{PSM}_{12}] - ARM_{YY}[\overline{PSM}_{13} + i\overline{PSM}_{14}] \]
Total Reverse Model – Gradient for Jones Pupil

\[
\begin{pmatrix}
\overline{\text{ARM}}_{XX}(\xi, \eta) & \overline{\text{ARM}}_{XY}(\xi, \eta) \\
\overline{\text{ARM}}_{YX}(\xi, \eta) & \overline{\text{ARM}}_{YY}(\xi, \eta)
\end{pmatrix}
\xrightarrow{\mathcal{F}_{\xi \to u}^{-1}}
\begin{pmatrix}
\overline{J}_{XX}(u, v) & \overline{J}_{XY}(u, v) \\
\overline{J}_{YX}(u, v) & \overline{J}_{YY}(u, v)
\end{pmatrix}
\]
Total Reverse Model – Gradient for Pauli Pupils

\[\bar{a}_0(u, v) = J_{XX}(u, v) + J_{YY}(u, v) \]

\[\bar{a}_1(u, v) = J_{XX}(u, v) - J_{YY}(u, v) \]

\[\bar{a}_2(u, v) = J_{XY}(u, v) + J_{YX}(u, v) \]

\[\bar{a}_3(u, v) = i \left[J_{XY}(u, v) - J_{YX}(u, v) \right] \]
Total Reverse Model – Gradients for phase/amplitude of a_0

$$\tilde{A}(u, v) = \Re\{\tilde{a}_0(u, v) \exp[-i \phi(u, v)]\}$$

$$\bar{W}(u, v) = \frac{2\pi}{\lambda} \Im\{\tilde{a}_0(u, v) a_0^*(u, v)\}$$
Total Reverse Model – Gradients for Zernike coefficients

\[\tilde{c}_{0n} = \sum_{u,v} \tilde{A}(u, v) Z_n(u, v) \]

\[\tilde{c}_{1n} = \sum_{u,v} \tilde{W}(u, v) Z_n(u, v) \]
Total Reverse Model – Gradients for Zernike coefficients

\[\bar{c}_{2n} = \sum_{u,v} \Re\{\bar{a}_1(u,v)\}Z_n(u,v) \]

\[\bar{c}_{3n} = \sum_{u,v} \Im\{\bar{a}_1(u,v)\}Z_n(u,v) \]
Total Reverse Model – Gradients for Zernike coefficients

\[\bar{c}_{4n} = \sum_{u,v} \Re \{ \bar{a}_2(u,v) \} Z_n(u,v) \]

\[\bar{c}_{5n} = \sum_{u,v} \Im \{ \bar{a}_2(u,v) \} Z_n(u,v) \]
Total Reverse Model – Gradients for Zernike coefficients

\[\bar{c}_{6n} = \sum_{u,v} \Re\{\bar{a}_3(u, v)\}Z_n(u, v) \]

\[\bar{c}_{7n} = \sum_{u,v} \Im\{\bar{a}_3(u, v)\}Z_n(u, v) \]
In summary

- Nonlinear optimization for phase retrieval is done best with algorithmic differentiation.

- A model with polarization was created, and a reverse model was built according to rules from [2]
 - Uses Pauli-Zernike coefficients, PSF formulation from [3]
 - Allows for optimization of scalar aberrations, polarization aberrations, and source polarization.

QUESTIONS