From Nanolasers to Photonic Integrated Circuits

Qing Gu
Nanophotonics Lab
Electrical & Computer Engineering, UT Dallas
Why integration?
Why integration?

Moore’s Law of Electronic IC

Source: Intel
Why integration?

Density

Moore’s Law of Electronic IC

10B

1B

100M

10M

1M

100K

10K

1970

1980

1990

2000

2010

2020

Source: Intel

Source: Infinera
Why integration?

Moore’s Law of Electronic IC

The solution: Photonic IC

Source: Intel
Electronic IC vs. Photonic IC

<table>
<thead>
<tr>
<th>Signal</th>
<th>Electronic IC</th>
<th>Photonic IC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electrical</td>
<td>Optical</td>
</tr>
</tbody>
</table>

Promise of Photonic IC:
- Increase optical speed
- Increase optical bandwidth
- Decrease cost per bit
- Decrease power per bit

Source: Infinera
Electronic IC vs. Photonic IC

<table>
<thead>
<tr>
<th></th>
<th>Electronic IC</th>
<th>Photonic IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>Electrical</td>
<td>Optical</td>
</tr>
<tr>
<td>Components</td>
<td>Transistors, capacitors, resistors</td>
<td>Waveguides, lasers, detectors, modulators, filters</td>
</tr>
</tbody>
</table>

Promise of Photonic IC:
- Increase optical speed
- Increase optical bandwidth
- Decrease cost per bit
- Decrease power per bit

Source: Infinera
Electronic IC vs. Photonic IC

<table>
<thead>
<tr>
<th></th>
<th>Electronic IC</th>
<th>Photonic IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>Electrical</td>
<td>Optical</td>
</tr>
<tr>
<td>Components</td>
<td>Transistors, capacitors, resistors</td>
<td>Waveguides, lasers, detectors, modulators, filters</td>
</tr>
<tr>
<td>Material</td>
<td>Silicon</td>
<td>Silicon, compound semiconductor</td>
</tr>
</tbody>
</table>

Promise of Photonic IC:

- Increase optical speed
- Increase optical bandwidth
- Decrease cost per bit
- Decrease power per bit

Source: Infinera
Electronic IC vs. Photonic IC

Moore’s Law of Electronic IC

Passive PIC debut

Silicon Photonics

Source: Intel & Light Reading
Photonic IC

Waveguides

Lasers

©Photonic Integration Group, Eindhoven University of Technology

Couplers

Ikeda et al. APL 92.20 (2008)

Modulators

Sorger et al. Nanophotonics 1.1 (2012)

Detectors

III-V material platform

Silicon Photonics

Waveguides

Photonic IC

©Photonic Integration Group, Eindhoven University of Technology

Lasers

©Photonic Integration Group, Eindhoven University of Technology

Couplers

Ikeda et al. APL 92.20 (2008)

Port 3

Port 4

Modulators

Sorger et al. Nanophotonics 1.1 (2012)

Detectors

Reducing the laser size: Challenges

- **Material gain requirement: threshold gain**

\[g_{th} \propto \frac{1}{\Gamma \cdot Q} \]

\(\Gamma : \) mode confinement; \(Q : \) quality factor

\[g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}} \] (below threshold)

- **Size requirement: diffraction limit**

\[L_{\text{min}} \sim \frac{\lambda}{2n} \]
Reducing the laser size: Challenges

- **Material gain requirement: threshold gain**
 \[g_{th} \propto \frac{1}{\Gamma \cdot Q} \]
 \(\Gamma \): mode confinement; \(Q \): quality factor

- **Size requirement: diffraction limit**
 \[L_{\text{min}} \sim \frac{\lambda}{2n} \]

\(g_{th} \propto \) non-radiative loss \(\sim \frac{\text{surface area}}{\text{volume}} \) (below threshold)
Reducing the laser size: Challenges

• Material gain requirement: threshold gain

\[g_{th} \propto \frac{1}{\Gamma \cdot Q} \quad \Gamma : \text{mode confinement}; \quad Q: \text{quality factor} \]

\[g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}} \quad (\text{below threshold}) \]

• Size requirement: diffraction limit

\[L_{\text{min}} \sim \frac{\lambda}{2n} \]

Mirror Gain medium Mirror

Output
Reducing the laser size: Challenges

- Material gain requirement: threshold gain

\[g_{th} \propto \frac{1}{\Gamma \cdot Q} \]

\(\Gamma \): mode confinement; \(Q \): quality factor

\[g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}} \] (below threshold)

- Size requirement: diffraction limit

\[L_{\text{min}} \sim \frac{\lambda}{2n} \]
Reducing the laser size: Challenges

• Material gain requirement: threshold gain

\[g_{th} \propto \frac{1}{\Gamma \cdot Q} \]

\(\Gamma \) : mode confinement; \(Q \) : quality factor

\[g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}} \] (below threshold)

• Size requirement: diffraction limit

\[L_{\text{min}} \sim \frac{\lambda}{2n} \]
Reducing the laser size: Challenges

- Material gain requirement: threshold gain
 \[g_{th} \propto \frac{1}{\Gamma \cdot Q} \]
 \(\Gamma \) : mode confinement; \(Q \) : quality factor

- Size requirement: diffraction limit
 \(L_{\text{min}} \sim \frac{\lambda}{2n} \)

\[g_{th} \propto \text{non-radiative loss} \propto \frac{\text{surface area}}{\text{volume}} \]

(above threshold)
Nanolasers: State of the art

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold
Nanolasers: State of the art

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold

• Dielectric disk lasers
Nanolasers: State of the art

Desired nanolaser properties for dense chip-scale integration:
- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold

• Dielectric disk lasers

• Photonic crystal lasers

Nanolasers: State of the art

Desired nanolaser properties for dense chip-scale integration:
- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold

- Dielectric disk lasers

- Photonic crystal lasers

- Nano-membrane lasers

Yang et al. Nat. Photon. 6, 615 (2012)

Nanolasers: State of the art

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- continuous wave electrically pumped
- low lasing threshold

- Dielectric disk lasers

- Photonic crystal lasers

- Nano-membrane lasers

- Nano-wire/rod lasers

Yang et al. Nat. Photon. 6, 615 (2012)

Lu et al. Science 337, 450 (2012)
Cavity design: metallic cavity

Desired nanolaser properties for dense chip-scale integration:

- ✔ electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- electrically pumped
- low lasing threshold
Cavity design: metallic cavity

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
 - sub-wavelength in 3D
 - room temperature operation
 - electrically pumped
 - low lasing threshold

Metallic-cavity nanolaser

Cavity design: metallic cavity

Desired nanolaser properties for dense chip-scale integration:

- **electromagnetically isolated**
- sub-wavelength in 3D
- room temperature operation
- electrically pumped
- low lasing threshold

Metallic-cavity nanolaser

@ 77K

\[Q = 140 \]
\[g_{th} \approx 7 \times 10^5 \text{ cm}^{-1} \]
Cavity design: metallic cavity

Desired nanolaser properties for dense chip-scale integration:

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- electrically pumped
- low lasing threshold

Metallic-cavity nanolaser

@ 300K
Q = 48
\(g_{th} \approx 3 \times 10^6 \text{ cm}^{-1} \)

material gain
\(g = 3000 \text{ cm}^{-1} \)
Lasers in Photonic ICs

Design: Optical cavity mode
Lasers in Photonic ICs

Design:
Optical cavity mode

Proof of concept:
Optically pumped laser
Lasers in Photonic ICs

Design:
Optical cavity mode

Proof of concept:
Optically pumped laser

Multi-physics design
for electrical pumping:
Optical, electrical, thermal
Lasers in Photonic ICs

Design: Optical cavity mode

Proof of concept: Optically pumped laser

Multi-physics design for electrical pumping: Optical, electrical, thermal

Demonstration: Electrically pumped laser
Lasers in Photonic ICs

Design:
Optical cavity mode

Proof of concept:
Optically pumped laser

Multi-physics design
for electrical pumping:
Optical, electrical, thermal

Analysis:
• Modulation speed
• Energy efficiency

Demonstration:
Electrically pumped laser
Lasers in Photonic ICs

Design: Optical cavity mode

Insertion into Photonic ICs

Proof of concept: Optically pumped laser

Multi-physics design for electrical pumping: Optical, electrical, thermal

Analysis:
• Modulation speed
• Energy efficiency

Demonstration: Electrically pumped laser
Lasers in Photonic ICs

Design: Optical cavity mode

Proof of concept: Optically pumped laser

Multi-physics design for electrical pumping: Optical, electrical, thermal

Demonstration: Electrically pumped laser

Analysis:
• Modulation speed
• Energy efficiency

Insertion into Photonic ICs
Cavity design: metallo-dielectric cavity

M. P. Nezhad et al, Nature Photonics, 4, 6, 395-399, 2010
Cavity design: metallo-dielectric cavity

Metallic cavity

Metallo-dielectric cavity

Gain

Dielectric “shield”

Cavity design: metallo-dielectric cavity

Metallic cavity

Metallo-dielectric cavity

Dielectric “shield”

Cavity design: metallo-dielectric cavity

Cavity design: metallo-dielectric cavity

A. Mizrahi et al, Optics Letters, 33, 1261-1263, 2008
Cavity design: metallo-dielectric cavity

A. Mizrahi et al, Optics Letters, 33, 1261-1263, 2008
Cavity design: metallo-dielectric cavity

- "shield" thickness
 - $\Delta=0\text{nm}$
 - $\Delta=100\text{nm}$
 - $\Delta=200\text{nm}$
Cavity design: metallo-dielectric cavity

A. Mizrahi et al, Optics Letters, 33, 1261-1263, 2008
Optically pumped room temperature nanolaser

- electromagnetically isolated
- sub-wavelength in 3D
- room temperature operation
- electrically pumped
- low lasing threshold

Lasers in Photonic ICs

- **Design:** Optical cavity mode
- **Demonstration:** Electrically pumped laser
- **Proof of concept:** Optically pumped laser
- **Multi-physics design for electrical pumping:** Optical, electrical, thermal
- **Analysis:**
 - Modulation speed
 - Energy efficiency
- **Insertion into Photonic ICs**
- **Demonstration:** Electrically pumped laser
Multi-physics design for electrical pumping

Optical
Cavity design: λ, Q, g_{th}

Electrical
Power dissipation, band diagram, heterostructure design

Thermal
- Heat generation & dissipation
- Explore high thermal-conductivity dielectric “shield” material

T-dependent parameters
Electrically pumped nanolaser

Qing Gu et al, *IEEE JQE*, Vol. 50, Issue 7 (2014);
Electrically pumped nanolaser

Qing Gu et al, *IEEE JQE*, Vol. 50, Issue 7 (2014);
Electrically pumped nanolaser

Vertical confinement via InP undercut

Qing Gu et al, *IEEE JQE*, Vol. 50, Issue 7 (2014);
Electrically pumped nanolaser

Vertical confinement via InP undercut

Qing Gu et al, IEEE JQE, Vol. 50, Issue 7 (2014);
Electrically pumped nanolaser

Vertical confinement via InP undercut

Qing Gu et al, *IEEE JQE*, Vol. 50, Issue 7 (2014);
InP undercut: Two-step selective etching

Before
InP undercut
InP undercut: Two-step selective etching

Before InP undercut

HCl:CH₃COOH

HCl:H₃PO₄
InP undercut: Two-step selective etching

Before InP undercut

HCl:CH₃COOH

HCl:H₃PO₄

HCl:H₃PO₄ = 1:4

HCl:CH₃COOH:H₂O = 1:4:5

500nm

200nm
Vertical confinement via InP undercut

g_{th} (cm$^{-1}$) vs. Undercut (%)
Optical: robust design via InP undercut

Effect of undercut sidewall angle

Optical: robust design via InP undercut

Effect of undercut sidewall angle

Multi-physics design with Al_2O_3 shield

<table>
<thead>
<tr>
<th></th>
<th>SiO_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity ($\text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$)</td>
<td>1.1</td>
</tr>
<tr>
<td>Refractive index</td>
<td>1.46</td>
</tr>
</tbody>
</table>

Qing Gu et al, *IEEE JQE*, Vol. 50, Issue 7 (2014);
Multi-physics design with Al$_2$O$_3$ shield

<table>
<thead>
<tr>
<th></th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity (W·m$^{-1}$·K$^{-1}$)</td>
<td>1.1</td>
<td>2 - 20</td>
</tr>
<tr>
<td>Refractive index</td>
<td>1.46</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Qing Gu et al, *IEEE JQE*, Vol. 50, Issue 7 (2014);
Multi-physics design with Al_2O_3 shield

Multi-physics design with Al$_2$O$_3$ shield

\[g_{th} = \frac{\lambda}{R_{core}} \]

\[R_{core} = 575 \text{ nm} \]

Optical

\[\lambda = 1584 \text{ nm} \]

\[g_{th} = 63 \text{ cm}^{-1} \]

Spectral window of EL

1300nm - 1650nm

Multi-physics design with Al$_2$O$_3$ shield

\[g_{th} \text{ (cm}^{-1}\text{)} \]

- $R_{\text{core}} = 575 \text{ nm}$

\[\lambda = 1376 \text{ nm} \quad g_{th} = 29 \text{ cm}^{-1} \]
\[\lambda = 1431 \text{ nm} \quad g_{th} = 192 \text{ cm}^{-1} \]
\[\lambda = 1584 \text{ nm} \quad g_{th} = 63 \text{ cm}^{-1} \]

Spectral window of EL

Multi-physics design with Al_2O_3 shield

Optical

- $R_{\text{core}} = 575$ nm
- $g_{th} = 29$ cm\(^{-1}\)
- $\lambda = 1376$ nm
- $\lambda = 1431$ nm
- $\lambda = 1584$ nm
- $g_{th} = 192$ cm\(^{-1}\)
- $g_{th} = 63$ cm\(^{-1}\)

Spectral window of EL

- Wavelength: 1300 nm to 1650 nm

Electrical & Thermal

- Al_2O_3, $K = 10$ W/(m*K)
- SiO_2, $K = 1.1$ W/(m*K)

- $T_{\text{steady state}} = 327$ K
- $T_{\text{steady state}} = 353$ K
- $T_{\text{steady state}} = 300$ K

Multi-physics design with Al$_2$O$_3$ shield

Optical

- $\lambda = 1376$ nm
- $g_{th} = 29 \text{ cm}^{-1}$
- $\lambda = 1431$ nm
- $g_{th} = 192 \text{ cm}^{-1}$
- $\lambda = 1584$ nm
- $g_{th} = 63 \text{ cm}^{-1}$

Spectral window of EL

- Wavelength range: 1300 nm to 1650 nm

Electrical & Thermal

- Al$_2$O$_3$, $K = 10 \text{ W/(m*K)}$
- SiO$_2$, $K = 1.1 \text{ W/(m*K)}$

- $T_{\text{steady state}} = 327 \text{ K}$
- $T_{\text{steady state}} = 353 \text{ K}$

Material Gain

- Graph showing gain vs. wavelength for different temperatures: 77K, 300K, 327K

- Gain equation: $N = 7.072 \times 10^{18} \text{ cm}^{-3}$

Fabrication

500 nm

E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
Fabrication

500 nm

E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
Two-step selective InP wet etching

- HSQ
- N++ InGaAs
- N-InP
- InGaAs Gain
- P-InP
- P++ InGaAsP
- InP
Fabrication

500 nm

N++ InGaAs
N-InP
InGaAs Gain
P-InP
P++ InGaAsP
InP

E-beam patterning/RIE (CH₄:H₂:Ar)
Two-step selective InP wet etching
Fabrication

- E-beam patterning/RIE (CH$_4$: H$_2$: Ar)
- Two-step selective InP wet etching

500 nm

Diagram:
- N++ InGaAs
- InP
- InGaAs Gain
- InP
- P++ InGaAsP
- InP
Fabrication

500 nm

- E-beam patterning/RIE (CH₄:H₂:Ar)
- Two-step selective InP wet etching
- Dielectric “shield” deposition

Diagram:
- N++ InGaAs
- InP
- InGaAs Gain
- InP
- P++ InGaAsP
- InP
Fabrication

E-beam patterning/RIE (CH₄:H₂:Ar)
Two-step selective InP wet etching
Dielectric “shield” deposition

500 nm
Fabrication

500 nm

E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
Two-step selective InP wet etching
Dielectric “shield” deposition
Expose the pillar top (for top contact)
Fabrication

500 nm

E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
Two-step selective InP wet etching
Dielectric “shield” deposition
Expose the pillar top (for top contact)
E-beam patterning/RIE (\text{CH}_4:\text{H}_2:\text{Ar})

Two-step selective InP wet etching

Dielectric “shield” deposition

Expose the pillar top (for top contact)
Fabrication

- E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
- Two-step selective InP wet etching
- Dielectric “shield” deposition
- Expose the pillar top (for top contact)

Diagram:

- N++ InGaAs
- InGaAs Gain
- P++ InGaAsP
- Dielectric
- PR
- InP

Scale: 500 nm
Fabrication

500 nm

E-beam patterning/RIE (CH$_4$:H$_2$:Ar)

Two-step selective InP wet etching

Dielectric “shield” deposition

Expose the pillar top (for top contact)

Top contact (Ti/Pd/Au) formation
Fabrication

500 nm

E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
Two-step selective InP wet etching
Dielectric “shield” deposition
Expose the pillar top (for top contact)
Top contact (Ti/Pd/Au) formation

PRPR

InGaAs
Gain

N++ InGaAs

Ti+Pd+Au

InP

Dielectric

P++ InGaAsP

InP

InP
Fabrication

- E-beam patterning/RIE (CH₄:H₂:Ar)
- Two-step selective InP wet etching
- Dielectric “shield” deposition
- Expose the pillar top (for top contact)
- Top contact (Ti/Pd/Au) formation
Fabrication

500 nm

E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
Two-step selective InP wet etching
Dielectric “shield” deposition
Exposé the pillar top (for top contact)
Top contact (Ti/Pd/Au) formation
Metal cavity (Ag/Au) formation
Fabrication

- E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
- Two-step selective InP wet etching
- Dielectric “shield” deposition
- Expose the pillar top (for top contact)
- Top contact (Ti/Pd/Au) formation
- Metal cavity (Ag/Au) formation

500 nm
Fabrication

- E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
- Two-step selective InP wet etching
- Dielectric “shield” deposition
- Expose the pillar top (for top contact)
- Top contact (Ti/Pd/Au) formation
- Metal cavity (Ag/Au) formation
- Bottom contact formation (Ti/Pd/Au)
Fabrication

500 nm

- E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
- Two-step selective InP wet etching
- Dielectric “shield” deposition
- Expose the pillar top (for top contact)
- Top contact (Ti/Pd/Au) formation
- Metal cavity (Ag/Au) formation
- Bottom contact formation (Ti/Pd/Au)
Fabrication

- E-beam patterning/RIE (CH₄:H₂:Ar)
- Two-step selective InP wet etching
- Dielectric “shield” deposition
- Expose the pillar top (for top contact)
- Top contact (Ti/Pd/Au) formation
- Metal cavity (Ag/Au) formation
- Bottom contact formation (Ti/Pd/Au)

500 nm
Fabrication

E-beam patterning/RIE (CH$_4$:H$_2$:Ar)
Two-step selective InP wet etching
Dielectric “shield” deposition
Expose the pillar top (for top contact)
Top contact (Ti/Pd/Au) formation
Metal cavity (Ag/Au) formation
Bottom contact formation (Ti/Pd/Au)
Wire-bond to sample holder
Characterization micro-EL setup

Sample

Current source

NA=0.4 M.O.

flip mirror

chopper

monochromator

InGaAs detector

lock-in amplifier

CCD camera
Characterization micro-EL setup

- Sample
- NA=0.4 M.O.
- Current source
- Flip mirror
- Chopper
- Monochromator
- InGaAs detector
- Lock-in amplifier
- CCD camera
Characterization micro-EL setup

- Sample
- NA=0.4 M.O.
- Current source
- Flip mirror
- Chopper
- Monochromator
- InGaAs detector
- Lock-in amplifier
- CCD camera
Characterization micro-EL setup

- Sample
- NA = 0.4 M.O.
- Current source
- Flip mirror
- Chopper
- Monochromator
- InGaAs detector
- Lock-in amplifier
Lasers in Photonic ICs

Insertion into Photonic ICs

Design: Optical cavity mode

Proof of concept: Optically pumped laser

Multi-physics design for electrical pumping: Optical, electrical, thermal

Analysis:
- Modulation speed
- Energy efficiency

Demonstration: Electrically pumped laser
Purcell factor F_P

$$F_P = \frac{\text{spontaneous emission in a cavity}}{\text{spontaneous emission in free space}}$$

< 1: inhibition

> 1: enhancement
Purcell factor F_P

$$F_P = \frac{\text{spontaneous emission in a cavity}}{\text{spontaneous emission in free space}}$$

< 1: inhibition

> 1: enhancement

Literature $^{[1,2]}$

$$F_P = \frac{3\lambda^3}{4\pi^2 n^3} \frac{Q}{V_{\text{eff}}} \propto \frac{Q}{V_{\text{eff}}}$$

Approach

- Emitter-field-reservoir model in the quantum theory of damping

If the reservoir (environment) is cavity boundary
- corresponds to the transparent medium condition

Qing Gu et al, Optics Express, Vol. 21, No. 13 (2013)
Purcell factor, $T = 300\text{K}$

$$F_P = \frac{\pi (c/n_r)^3}{\tau_{\text{coll}}} \frac{\omega_k}{\bar{\omega}_{21}^3} \frac{1}{V_a} \left\{ \Gamma_k \right\} \int \int D(\omega_{21}) R(\omega - \omega_{21}, \tau_{\text{coll}}) L_k(\omega - \omega_k) d\omega d\omega_{21}$$

\begin{align*}
\uparrow & \quad \text{Inhomogeneous broadening} \\
\uparrow & \quad \text{Homogeneous broadening} \\
\uparrow & \quad \text{Cavity lineshape}
\end{align*}

Literature

$$F_P = \frac{3\lambda^3}{4\pi^2 n^3} \frac{Q}{V_{\text{eff}}} \propto \frac{Q}{V_{\text{eff}}}$$
Purcell factor, $T = 300K$

\[F_P = \frac{\pi (c / n_r)^3}{\tau_{\text{coll}}^3} \frac{\omega_k}{\omega_{21}^3} \frac{1}{V_a} \{ \Gamma_k \} \int \int D(\omega_{21}) R(\omega - \omega_{21}, \tau_{\text{coll}}) L_k(\omega - \omega_k) d\omega d\omega_{21} \]

- Inhomogeneous broadening
- Homogeneous broadening
- Cavity lineshape

$L_k(\omega - \omega_k)$ is the broadest of the three lineshapes

Literature

\[F_P = \frac{3\lambda^3}{4\pi^2 n^3} \frac{Q}{V_{\text{eff}}} \propto \frac{Q}{V_{\text{eff}}} \]

Qing Gu et al, Optics Express, Vol. 21, No. 13 (2013)
Purcell factor, $T = 300\,\text{K}$
Spontaneous emission factor β

$\beta = \frac{\text{spontaneous emission into the lasing mode}}{\text{spontaneous emission into the lasing mode} + \text{into other cavity modes} + \text{into free space radiation modes}}$
Spontaneous emission factor β

\[
\beta = \frac{\text{spontaneous emission into the lasing mode}}{\text{spontaneous emission into the lasing mode} + \text{into other cavity modes} + \text{into free space radiation modes}}
\]

<table>
<thead>
<tr>
<th></th>
<th>Conventional laser</th>
<th>Nanoscale laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous emission factor β</td>
<td>0.00001</td>
<td>0.1 - 1</td>
</tr>
</tbody>
</table>
Spontaneous emission factor β

\[\beta = \frac{\text{spontaneous emission into the lasing mode}}{\text{spontaneous emission into the lasing mode} + \text{into other cavity modes} + \text{into free space radiation modes}} \]

<table>
<thead>
<tr>
<th>Spontaneous emission factor β</th>
<th>Conventional laser</th>
<th>Nanoscale laser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00001</td>
<td>0.1 - 1</td>
</tr>
</tbody>
</table>
β factor in nanolasers

\[β = \frac{\text{spontaneous emission into the lasing mode}}{\text{spontaneous emission into lasing mode} \oplus \text{into other cavity modes} \oplus \text{into free space radiation modes}} \]

- \(β = 0.001 \) micro-laser
- \(β = 1 \) nano-laser

\[\text{Photon density (}\text{cm}^{-3}\text{)} \]

\[\text{Current (A)} \]

\(β = 1 \text{ nano-laser} \)

\(β = 0.001 \text{ micro-laser} \)
β factor in nanolasers

\[\beta = \frac{\text{spontaneous emission into the lasing mode}}{\text{spontaneous emission into lasing mode} + \text{into other cavity modes} + \text{into free space radiation modes}} \]

- \(\beta = 1 \) nano-laser
- \(\beta = 0.001 \) micro-laser
\[\beta = \frac{\text{spontaneous emission into the lasing mode}}{\text{spontaneous emission into lasing mode}} \]

\[\beta = 0.001 \]

\[\beta = 1 \]

\[\beta_{\text{max}} = \frac{F_P^{(\text{lasing})}}{\sum_k F_P^{(k)}} \]
β factor, $T = 300K$

\[\beta_{\text{max}} = \frac{\text{spontaneous emission into the lasing mode}}{\text{spontaneous emission into lasing mode} + \text{into other cavity modes} + \text{into free space radiation modes}} \]

\[\beta_{\text{factor}, \, T = 300K} \]

\[\begin{align*}
1310\text{nm} & : & Q = 65 & : & F_p = 0.032 \\
1373\text{nm} & : & Q = 64 & : & F_p = 0.079 \\
1387\text{nm} & : & Q = 63 & : & F_p = 0.096 \\
1416\text{nm} & : & Q = 478 & : & F_p = 0.170 \\
1546\text{nm} & : & Q = 61 & : & F_p = 0.097
\end{align*} \]

\[\beta_{\text{max}} = 0.377 \]

\[\beta_{\text{max}} = \frac{\text{spontaneous emission into the lasing mode}}{\text{spontaneous emission into lasing mode} + \text{into other cavity modes} + \text{into free space radiation modes}} \]

\[\beta_{\text{max}} = \frac{F_{P}^{(\text{lasing})}}{\sum_{k} F_{P}^{(k)}} \]

\[F_P(T) = \frac{\pi (c/n_r)^3}{\tau_{\text{coll}}} \frac{\omega_k(T)}{\omega^3} \frac{1}{V_a} \left\{ \Gamma_k \right\} \int \int D(\omega_{21}, T) R(\omega - \omega_{21}, \tau_{\text{coll}}, T) L_k(\omega - \omega_k, T) d\omega d\omega_{21} \]
β factor: temperature dependence

Purcell factor

\[
F_P(T) = \frac{\pi (c/n_r)^3}{\tau_{coll}} \frac{\omega_k(T)}{\bar{\omega}_2^3} \frac{1}{V_a} \left\{ \Gamma_k \right\} \int \int D(\omega_2, T) R(\omega - \omega_2, \tau_{coll}, T) L_k(\omega - \omega_k, T) d\omega d\omega_2
\]

![Graph showing β_max vs Temperature (K) with R=225nm](image.png)
β factor: temperature dependence

Purcell factor

\[F_P(T) = \frac{\pi (c/n_r)^3}{\tau_{\text{coll}}} \frac{\omega_k(T)}{\tilde{\omega}_{21}^3} \frac{1}{V_a} \{ \Gamma_k \} \int \int D(\omega_{21}, T) R(\omega - \omega_{21}, \tau_{\text{coll}}, T) L_k(\omega - \omega_k, T) d\omega d\omega_{21} \]
Lasers in Photonic ICs

Design:
Optical cavity mode

Proof of concept:
Optically pumped laser

Multi-physics design
for electrical pumping:
Optical, electrical, thermal

Demonstration:
Electrically pumped laser

Analysis:
- Modulation speed
- Energy efficiency

Insertion into Photonic ICs
Integration of III-V and Silicon

III-V/Si integration options

 • monolithic
 • heterogeneous

Integration of III-V and Silicon

III-V/Si integration options • monolithic
 • heterogeneous

Integration of III-V and Silicon

III-V/Si integration options
- monolithic
- heterogeneous

Integration of III-V and Silicon

III-V/Si integration options • monolithic
 • heterogeneous

Integration of III-V and Silicon

III-V/Si integration options • monolithic
• heterogeneous

Integration of III-V and Silicon

III-V/Si integration options

• monolithic
• heterogeneous

Integration of III-V and Silicon

III-V/Si integration options

• monolithic
• heterogeneous

- Large scale (mm scale)
- Low temperature process (< 400 °C)
- Direct bond between III-V and Si
- No alignment required

III-V/Si nanolaser

III-V/Si nanolaser
III-V/Si nanolaser

III-V/Si nanolaser

III-V/Si micro-DFB laser

III-V/Si micro-DFB laser

Outlook: Coupling light emission to waveguide

Summary:

- Nanolaser multi-physics design
- Thermal management
- Performance analysis
- Heterogeneous integration of III-V/Si
THANK YOU!