Burst Mode Lasers

Presented by:

OSA Laser Systems Technical Group
The OSA Laser Systems Technical Group Welcomes You!

BURST MODE LASERS WEBINAR
11 December 2019 • 13:30 EST
Technical Group Leadership 2019

Chair
Mark Spencer
Air Force Research Laboratory

Vice Chair
Casey Pellizzari
United States Air Force Academy

Event officer
Santasri Bose-Pillai
Air Force Institute of Technology

Social media officer
Walid Tawfik Younes Mohamed
Cairo University

Webinar officer
Jason Schmidt
MZA Associates Corporation

Event officer
Alex Fuerbach
Macquarie University
Technical Group at a Glance

• Focus
 • This group encompasses novel laser system development for a broad range of scientific, industrial, medical, remote sensing and other directed-energy applications.

• Mission
 • To benefit YOU
 • Webinars, e-Presence, publications, technical events, business events, outreach
 • Interested in presenting your research? Have ideas for TG events? Contact us at TGLaserSystems@osa.org.

• Find us here
 • Website: www.osa.org/LaserSystemsTG
 • Facebook: https://www.facebook.com/groups/378463153017808/
 • LinkedIn: https://www.linkedin.com/groups/6993076/
Today’s Webinar

Burst Mode Lasers Webinar

Dr. Josef Felver
Spectral Energies LLC
josef.felver@spectralenergies.com

Speaker’s Short Bio:
Dr. Josef Felver’s specialization is the development and application of burst-mode laser systems with a focus on system integration and software control. He holds a doctoral degree in Physics from Washington State University.
Burst-Mode Lasers

Josef Felver
Outline

• Laser architecture and capabilities
• Diagnostic techniques
• Outlook
Motivation

• Reacting flow models validation
• Studies of flame instabilities
• Diagnostics of new engines
Pulse-burst laser approach

(a) CW laser is sliced into pulse train

(b) Nd:YAG gain curve

(c) Result is high power "burst" of 1~99 pulses

(Based on Lempert and Miles, et. al., AIAA-96-0500, 1996)
Brief History of Burst-Mode Lasers

Burst-Mode Lasers (“Pulse-burst”)

- **Princeton – R. Miles**
 - 500 kHz, 100 µs (PDV)
- **NASA Glenn – M. Wernet**
 - 1 MHz, <100 µs (PIV)
- **Ohio State – W. Lempert**
 - 10-1000 kHz, 1 ms
 - NO PLIF visualization
- **Auburn – B. Thurow**
 - 3D scanning flow visualization
- **Ohio State – J. Sutton**
 - Raman, Rayleigh (10 kHz, 10 ms)
- **AFRL/Iowa State – Roy, Meyer, Gord**
 - OH, NO, CH₂O PLIF, Mixture fraction, PIV
 - 5-100 kHz, up to 30 ms

![Image of Burst-Mode Lasers](image)

References

Necessity of High-Fidelity Measurements

Comparing 4 different state-of-the-art reacting LES codes on the Volvo bluff body test case:
Premixed Propane-Air, Re = 40,000, 288 K, Equivalence Ratio = 0.65

CharLES

LESLIE3D

OpenFOAM

Fluent

Instantaneous temperature Contours

All using the same grid, time-step, boundary conditions, and physical models: All give completely different answers!

- DNS not applicable to large scales yet: LES numerics and grid dependencies still exist even for simple problems.
- LES uses sub-grid models for turbulence-chemistry interactions – How do we know if models and global, system-level interactions are accurately understood under relevant high thermal power conditions?

Why laser diagnostics?

Particle image velocimetry (PIV)

1. Subdivide image into interrogation spots
2. Cross-correlation
3. Peak search

Laser 1: Image A
Laser 2: Image B

http://cav.safl.umn.edu/Facilities/piv.htm
Why laser diagnostics?

Laser spectroscopy

Spectrum can be related to the thermodynamic state of the gas

- Line frequency
- Line intensity
- Line width

speed
pressure
concentration
temperature

Species:
- N₂
- O₂
- H₂
- CO₂
- H₂O

Radicals:
- OH
- C₂
- CH
- CH₂O

Pollutants:
- NO
- CO
Pulse-burst laser layout
Burst-mode: high-energy output

![Graph showing pulse energy vs. repetition rate for different burst modes and sources.]

- Burst-mode: high-energy output
 - Pulse energy (mJ)
 - Repetition rate (kHz)
 - Burst duration
 - 10 Hz Nd:YAG
 - DPSS
Diode pumping: 100-ms Burst Duration

Diode array split for enhanced overlap

~4× higher than DPSS at 10 kHz

1,000 pulses

~7× higher

10,000 pulses
Pulse-burst laser flexibility

Pulse sequence shaping at high-repetition-rates via modulation of master oscillator
Flexible oscillator: Pulse Shaping

Input

(A)

Output

(B)

Intensity (A.U.)

Time (ns)

- 16 ns
- 42 ns
- 90 ns
- 189 ns
- 285 ns

- 12 ns
- 27 ns
- 53 ns
- 111 ns
- 169 ns
Flexible oscillator: Pulse Shaping
Flexible oscillator: Dual-pulse operation

![Graph showing input and output power over time](image)

- **Input power (a.u.)**
 - 0.000
 - 0.005
 - 0.010
 - 0.015
- **Output power (a.u.)**
 - 0.0
 - 0.2
 - 0.4
 - 0.6
 - 0.8
 - 1.0

- **Time (µsec)**
 - -1
 - 0
 - 1
 - 2

![Graph showing ratio of power](image)

- **Ratio \(E/E_{intensity,1} \)**
 - 0.0
 - 0.2
 - 0.4
 - 0.6
 - 0.8
 - 1.0

- **Repetition rate (kHz)**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100

- **Input power (a.u.) vs. Output power (a.u.)**
- **Camera frames**
- **Pulse Pair**
- **Measured (\(dt=1 \) µsec)**
- **Model**
10,000-frame, 100-kHz Stereo TR-PIV

10-kHz PIV is insufficient to resolve high-speed structures

Stereo PIV along centerline of a Mach 0.3 free jet with Re = 30,000.
Up to 4 mJ per pulse at 100 kHz with 1 µs inter-pulse spacing.

\(v_y = 102 \text{ m/s} \)

\(f = 100 \text{ kHz} \)

Playback at 50 µs/s

Miller et. al. 2015
25 and 50 kHz TR-PIV in Trisonic Wind Tunnel
Mach 3.7 jet issuing into a Mach 0.8 crossflow

S. Beresh et. al. 2015
Transient Wake Vorticity Behind Cylinder

175 m/s
Re = 1.8 × 10^5

Flow

50 kHz pulse pairs
20 mJ/pulse @532nm

Final interrogation window: 24 × 24 pix (1.8 × 1.8 mm^2)

Vortex shedding starts symmetric, then becomes a von Kármán street.

Wagner et. al., 2016 doi:10.2514/6.2016-0791
Development of a compact 14 J Nd:YAG burst-mode laser for PIV

- Sufficient PIV capabilities
- Easy transportation and more lab space
- Cost effective
Higher Harmonics

- 532 nm
- 1064 nm
- 355 nm
- 266 nm

SHG THG FHG

\(\lambda/2 \)

1064 nm 532 nm 355 nm 266 nm
50 and 100 kHz formaldehyde PLIF Mach 2 scramjet flameholder

Burst-mode laser applied to characterize spark and pulse-detonator ignition and flameholding in RQH Research Cell 19 with Drs. Cam Carter and Scott Peltier

Miller et. al. 2015
Formaldehyde PLIF and Chemiluminescence

50 kHz, 75 SLPM C_2H_4

- Spark
- Detonator
- Failed Detonator
50 and 100 kHz formaldehyde PLIF
Mach 2 scramjet flameholder

Formaldehyde PLIF and Chemiluminescence

50 kHz, 75 SLPM C₂H₄

Side camera
PLIF

Top camera
Chemiluminescence

Spark
Detonator
Failed Detonator
High-Speed 3D Combustion Species Measurements

20-kHz Tomo Acetone LIF

20 kHz Tomo CH$_2$O LIF

10 kHz Tomo LII

Halls et al. Optics letters 42 (14), 2830-2833 (2017)

Meyer et al., Optics express 24 (26), 29547-29555 (2016)

Multi-Leg Burst Mode Laser
Multi-Leg Burst Mode Laser

Simultaneous Measurements of Velocity and Scalars in Reacting Flows at 10 kHz

- OPO enabling wavelength tuning capability for OH LIF excitation
- Double pulse capability for PIV

The unique laser system is capable of simultaneously measuring velocity and concentrations of OH and CH$_2$O at a rate of 10 kHz

- Ability to identify the reaction zone, preheat zone, and flow velocity vector field with a single laser system

Roy et al., Optics letters 43 (11), 2704-2707 (2018)
Picosecond Burst-mode Laser

Pulse width flexibility using an 80-MHz picosecond oscillator incorporated into burst-mode laser architecture

Picosecond Burst-mode Laser

Self Focusing Damage to Nd:YAG Rod
Picosecond Burst-mode Laser

- Picosecond Laser Electronic-Excitation Tagging
Coherent anti-Stokes Raman scattering

The pump, ω_p, Stokes, ω_S, and probe, ω_{pr}, electric fields induce third order polarization:

$$P_{CARS}^{(3)} (\omega_{as}) = \omega_p + \omega_S + \omega_{pr}$$

where

$$\chi_{eff}^{(3)} = \chi_{NR}^{(3)}$$

This polarization gives rise to the following transitions:

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Transition, cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_2\text{S(3)}$</td>
<td>1050</td>
</tr>
<tr>
<td>CO_2</td>
<td>1275</td>
</tr>
<tr>
<td>C_2H_4</td>
<td>1340</td>
</tr>
<tr>
<td>CO_2</td>
<td>1388</td>
</tr>
<tr>
<td>$\text{H}_2\text{S(5)}$</td>
<td>1400</td>
</tr>
<tr>
<td>CH_4</td>
<td>1535</td>
</tr>
<tr>
<td>O_2</td>
<td>1555</td>
</tr>
<tr>
<td>C_2H_4</td>
<td>1625</td>
</tr>
<tr>
<td>$\text{H}_2\text{S(6)}$</td>
<td>1650</td>
</tr>
<tr>
<td>CO</td>
<td>2143</td>
</tr>
<tr>
<td>N_2</td>
<td>2331</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>2900 - 3200</td>
</tr>
</tbody>
</table>

100 kHz burst-mode CARS layout

Burst-mode OPG/OPA performance

(a) Pump Energy (mJ/pulse) vs. Time (ms)

(b) OPG/OPA Energy (mJ/pulse) vs. Time (ms)

(c) Intensity (Norm.) vs. Wavelength (nm)

(d) OPG/OPA Energy (mJ/pulse) vs. Pump (mJ/pulse)

\[E_{\text{OPG}} = 1.2e^{-8} \times E_{\text{pump}}^{4.87} \]
100-kHz CARS H$_2$ thermometry

Jet diffusion flame
Re \sim 10,000

Captured dynamical change in temperature in highly turbulent flame at 100 kHz rate

1-kHz Single-Shot 2D CARS

100-ps Burst-Mode
5 mJ @ 1 kHz, 532 nm

100-fs Regen
2 mJ @ 1 kHz, 800 nm

From fs oscillator

1 kHz from regen

1 kHz from regen

1 kHz
1064 nm

80 MHz

PD2

Bias control

PD1

ps PG

RF Amp

cw DL

EOM

1x2

Yb FA

AOM

PG

PA

Miller (2016)
1 kHz Temperature Imaging in a High-Speed Heated Jet

Steady-State Temperature Analysis

<table>
<thead>
<tr>
<th>T = 295 K</th>
<th>IRO Gain</th>
<th>T_{avg} [K], (%)</th>
<th>$T_{\text{RMS},x}$ [K], (%)</th>
<th>$T_{\text{RMS},t}$ [K], (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$</td>
<td>35%</td>
<td>287.2 (2.6%)</td>
<td>27.1 (9.4%)</td>
<td>7.4 (2.6%)</td>
</tr>
</tbody>
</table>

Spatial Res. @ 20% MTF = 79 µm (~ 3 pix)

Dispersion = 0.1 cm$^{-1}$/pix, Spectral Instrument Function = 0.46 cm$^{-1}$ (~4.5 pix)

Miller (2016)
Advantages of burst-mode lasers

- Order of magnitude higher pulse energies compared to continuously pulsed lasers
- Flexible repetition rate (1 – 10 MHz)
- Flexible pulse duration (100 ps – 10 μs)
- Inherent PIV capabilities
- External triggering, cold start
SYSTEM SPECS

<table>
<thead>
<tr>
<th>Quasimodo Model</th>
<th>1200</th>
<th>150</th>
<th>1500</th>
<th>100 ps option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual pulse width</td>
<td>10-15 ns</td>
<td>10-15 ns</td>
<td>10-15 ns</td>
<td>100 ps</td>
</tr>
<tr>
<td>Pulse frequency within a Burst</td>
<td>2-100 kHz</td>
<td>2-100 kHz</td>
<td>2-100 kHz</td>
<td>2-100 kHz</td>
</tr>
<tr>
<td>Number of pulses in Burst</td>
<td>100 @ 10 kHz</td>
<td>100 @ 10 kHz</td>
<td>100 @ 10 kHz</td>
<td>100 @ 10 kHz</td>
</tr>
<tr>
<td>Duration of Burst</td>
<td>1-10 ms</td>
<td>1-10 ms</td>
<td>1-10 ms</td>
<td>1-10 ms</td>
</tr>
<tr>
<td>Typical pulse energies (mJ) @ 10 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1064 nm</td>
<td>1000 (Limited)</td>
<td>100</td>
<td>1000 (Limited)</td>
<td>200</td>
</tr>
<tr>
<td>532 nm</td>
<td>500</td>
<td>50</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>355 nm</td>
<td>250</td>
<td>20</td>
<td>250</td>
<td>NA</td>
</tr>
<tr>
<td>266 nm</td>
<td>70</td>
<td>3</td>
<td>70</td>
<td>NA</td>
</tr>
<tr>
<td>Typical pulse energies (mJ) @ 100 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1064 nm</td>
<td>100</td>
<td>15</td>
<td>150</td>
<td>120</td>
</tr>
<tr>
<td>532 nm</td>
<td>50</td>
<td>5</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>355 nm</td>
<td>25</td>
<td>NA</td>
<td>30</td>
<td>NA</td>
</tr>
<tr>
<td>266 nm</td>
<td>3</td>
<td>NA</td>
<td>5</td>
<td>NA</td>
</tr>
<tr>
<td>Time between pulse sequences</td>
<td>12 seconds</td>
<td>12 seconds</td>
<td>12 seconds</td>
<td>12 seconds</td>
</tr>
<tr>
<td>Spectral Bandwidth</td>
<td>< 1 GHz</td>
<td>< 1 GHz</td>
<td>< 1 GHz</td>
<td>< 10 GHz</td>
</tr>
<tr>
<td>Beam diameter, 1/e²</td>
<td>4 - 7 mm</td>
<td>2.5 - 5 mm</td>
<td>4 - 7 mm</td>
<td>4 - 7 mm</td>
</tr>
<tr>
<td>Beam quality, M⁰</td>
<td>< 5</td>
<td>< 5</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Pulse sequence flatness with optional tailored profile control</td>
<td>>0.90</td>
<td>>0.90</td>
<td>>0.90</td>
<td>>0.90</td>
</tr>
</tbody>
</table>
Outlook

- MHz-rate 2D and 3D imaging
- Going femtoseconds (1 MHz 2D CARS)
- 100 kHz – 1 MHz tunable sources
Future work: Spatio-Temporally Evolving Complex Flows

• Supersonic combustion wave, Mach > 7
 • 4D cellular wave front structure, requiring MHz time resolution to track!
• Multiphase flows in explosives, particles of varying sizes, gas/solid phase velocities
 • Most subsonic, supersonic, and high-speed systems

Unpublished work at Purdue
Summary

✔ Transportable system
✔ Generation of stable 100-ms bursts (RMS ~2%)
✔ Extension of TDR (5,000)
✔ Pulse amplitude shaping for burst flatness enhancement
✔ Extension to picosecond pulse widths (<100 ps)
✔ Highly efficient SHG (~70%) using ps burst-mode laser
Acknowledgements

Joe Miller
Sukesh Roy
Terry Meyer
Naibo Jiang
Paul Hsu
Jason Mance
Mikhail Slipchenko
Kazi Arafat Rahman
Michael Smyser

Funding
Air Force Office of Scientific Research
Army Research Office
Office of Naval Research DARPA
Department of Energy
NSF

Wright-Patterson Air Force Base

Joe Miller