OSA Incubator on the Fundamental Limits of Optical Energy Conversion

12-14 November
OSA Headquarters ● 2010 Massachusetts Ave. NW ● Washington, DC, USA

HOSTED BY:
Svetlana V. Boriskina, Massachusetts Institute of Technology; Vivian Ferry, University of Minnesota; Alexander V. Kildishev, Purdue University; Jurgen Michel, Massachusetts Institute of Technology; Jonathan Tong, Massachusetts Institute of Technology

AGENDA

Wednesday, 12 November 2014

Afternoon Arrival/Hotel Check-in
Hotel Palomar, 2121 P St., NW
18:00 Welcome Dinner
Ezme, 2016 P St., NW

Thursday, 13 November 2014

8:00 Breakfast
OSA Headquarters, 2010 Massachusetts Ave., NW
8:30 Welcome
Alison Taylor, The Optical Society, USA
8:45 Overview of the Goals of the Incubator
Svetlana V. Boriskina, Massachusetts Institute of Technology, USA
9:00 The Opto-Electronic Physics Which Broke the Efficiency Record in Solar Cells
Eli Yablonovitch, University of California at Berkeley, USA (Keynote talk)
9:30 Session 1: Breaking the Limits (Chair: Jurgen Michel)
- Enhanced Photon Recycling in III-V Multi-junction Solar Cells
 Myles Steiner, National Renewable Energy Laboratory, USA
- Towards 3rd Generation Solar Cells Based on the Plasmonic Hot Electron Protection
 Krzysztof Kempa, Boston College, USA
- Nanoscale Optical Tomography with Cathodoluminescence Spectroscopy
 Ashwin Atre, Stanford University, USA
Session Discussion
Thursday, 13 November 2014, continued

10:30 Poster session & Coffee break

10:50 **Session 2: Think Small (Chair: Alexander V. Kildishev)**

2D Materials for Photon Conversion: Limits and Applications
Volker Sorger, George Washington University, USA

Nanoscale Optics and the Shockley-Queisser Limit
Jeremy Munday, University of Maryland, USA

Quantum Confined Semiconductor Nanocrystals for use in High Efficiency – Low Cost Solar Energy Conversion Strategies
Matthew Beard, National Renewable Energy Laboratory, USA

Spectrum Splitting Metasurfaces and Narrow-band Plasmonic Absorbers
Koray Aydin, Northwestern University, USA

Engineering Nano Optical Resonator for Light Absorption and Thermal Emission
Zongfu Yu, University of Wisconsin-Madison, USA

Session Discussion

12:20 Poster Session & Lunch, provided

13:20 **Session 3: Designer Materials & Fabrication Techniques (Chair: Vivian Ferry)**

Enabling Nanophotonics, Data Storage and Energy Conversion with New Plasmonic Materials
Vladimir Shalaev, Purdue University, USA

Nanomaterials for Solar Energy Conversion - Mixing Excitons and Surface Plasmons
Jao van de Lagemaat, National Renewable Energy Laboratory, USA

High-Bandgap III-Phosphide Cells for High-Efficiency Solar Energy Conversion
Minjoo Larry Lee, Yale University, USA

Light Trapping in Colloidal Quantum Dot Photovoltaics
Susanna Thon, Johns Hopkins University, USA

Nanomembranes and Soft Fabrication Methods for High Performance, Low Cost Energy Technologies
Ralph G. Nuzzo, University of Illinois at Urbana-Champaign, USA

Session Discussion
Thursday, 13 November 2014, continued

14:50 Poster Session & Coffee Break

15:10 Session 4: Alternative Materials & Concepts (Chair: Jonathan Tong)

Photothermal Effects, Hot Plasmonic Electrons and Plasmonic Photochemistry in Hybrid Nanostructures
 Alexander Govorov, Ohio University, USA

Breaking the Space Charge Limit in Organic Solar Cells by a Novel Plasmonic-Electrical Concept
 Wallace Choy, The University of Hong Kong, China

Balancing Spectral Light Harvesting in Solution-Processed Solar Cells with Plasmonic Nanoparticles
 Matthew Klug, Massachusetts Institute of Technology, USA

Diamond Based Solar Thermionic Energy Converters
 Martin Cryan, Bristol University, UK

Probing the Limits of Non-Isothermal Conversion: Material Challenges to Reaching High Efficiency in Hot-Carrier Energy Converters
 Svetlana V. Boriskina, Massachusetts Institute of Technology, USA

Session Discussion

16:40 Thermodynamics and Heat Transfer of Thermal Radiation
 Gang Chen, Massachusetts Institute of Technology, USA (Keynote talk)

17:10 Panel & Discussion
 Moderator: Svetlana V. Boriskina, Massachusetts Institute of Technology, USA
 Panelists: Howard Branz, Advanced Research Projects Agency – Energy, USA
 Lenny Tinker, Department of Energy, SunShot Initiative, USA
 Michael Haney, Advanced Research Projects Agency – Energy, USA

18:30 Dinner
 The Mad Hatter DC, 1319 Connecticut Ave., NW
Friday, 14 November 2014

8:00 Breakfast
 OSA Headquarters, 2010 Massachusetts Ave., NW

8:30 Nanophotonic Control of Thermal Radiation to Enable New Energy Applications
 Shanhui Fan, Stanford University, USA (Keynote talk)

9:00 Session 5: Heat is the New Light (Chair: Svetlana V. Boriskina)
 Nanophotonics for Energy Applications
 Marin Soljačić, Massachusetts Institute of Technology, USA

 High-Temperature Selective Emitter for Thermophotovoltaic Energy Conversion
 David Woolf, Physical Sciences, Inc., USA

 Selective Absorbers and Emitters for Thermophotovoltaics
 Peter Bermel, Purdue University, USA

 Harvesting Renewable Energy from Earth’s Mid-Infrared Emissions
 Steven Byrnes, Harvard University, USA

 Thermally Enhanced Photoluminescence for Efficient Photovoltaics
 Carmel Rotschild, Technion Israel Institute of Technology, Israel

 Session Discussion

11:30 Group Discussion
 Moderators: Host Team

13:00 Lunch, provided

14:00 Adjourn

Poster Submissions
- Improving Hyperdoped Black Silicon Using Nanosecond Pulsed Laser Melting, Benjamin Franta, Harvard University, USA
- Design Considerations of Practical Solar-Hydrogen Generators, Miguel A. Modestino, EPFL, Switzerland
- Enhancing Solar Driven Water Splitting with Hematite Photoanodes by Separation of Light Confinement and Absorption Sites Within the Cell, Avi Niv, Ben-Gurion University of the Negev, Israel
- Photonic Engineering of Low Dimensional Structures for Renewable Energy Conversion and Heat Management, Jonathan Tong, Massachusetts Institute of Technology, USA
- Solar Powered Thermophotovoltaic Energy Conversion, David Bierman, Massachusetts Institute of Technology, USA
- Refractory Plasmonic Materials for Energy Harvesting, Urcan Guler, Purdue University, USA