Thorlabs’ femtosecond-laser-pumped SC4500 MIR Supercontinuum Source emits over a wavelength range from approximately 1.3 µm to 4.5 µm (7700 cm⁻¹ to 2200 cm⁻¹). It emits more than 300 mW of average power in a collimated beam, with more than 110 mW of the output power within the 2.2 µm to 4.2 µm range. The brightness of this source exceeds traditional Globars and even synchrotron sources by orders of magnitude.

The supercontinuum light is generated by pumping a dispersion-engineered indium fluoride (InF₃) fiber with a built-in high-power femtosecond fiber laser (item # FSL1950F). Unlike supercontinuum sources pumped in the long-pulse regime (picoseconds to nanoseconds), the spectrum of a femtosecond-pumped source is stable from pulse to pulse. As a result, our supercontinuum source provides typical output noise of 0.025% (RMS; 10 Hz to 1 MHz).

High brightness and low intensity noise make the SC4500 the ideal source for sensing and spectroscopy applications in the MIR, while the high repetition rate makes it compatible with standard FTIR spectrometers. Applications include environmental gas sensing, standoff detection in the field, and infrared spectromicroscopy.

An all-fiber design with proprietary fluoride-to-silica fiber splices offers robust, reliable, and maintenance-free performance.

Specifications

- **Wavelength Range**: 1.3 - 4.5 µm (7700 - 2200 cm⁻¹)
- **Output Power**: 300 mW (Minimum)
- **MIR Output Power**: 110 mW (Minimum; 2.2 - 4.2 µm)
- **Output Power Stability**: ±1% (Room Temperature; ±1 °C)
- **Intensity Noise**: 0.025% (Typical; RMS; 10 Hz - 1 MHz)
- **Repetition Rate**: 50 MHz (Typical)
- **Beam Output**: Collimated; Single Spatial Mode
- **Dimensions**: 17.92” x 15.89” x 5.84” (455.2 mm x 403.5 mm x 148.2 mm)

Highlights

- 1.3 to 4.5 µm Wavelength Coverage
- 0.025% Intensity Noise Enables Highly Sensitive Measurements
- All-Fiber Design for Hands-Off, Reliable Operation
- Record-High Brightness Enables Remote and Standoff Detection
- Compatible with Standard FTIR Spectrometers

Applications

- Environmental Sensing
- Standoff Detection of Chemical and Biological Threats
- Absorption Spectroscopy with High Sensitivity
- Infrared Spectromicroscopy
- Ultrafast Spectroscopy
- Femtosecond Pulse Generation in the MIR

Supercontinuum Spectrum

Typical power spectral density as a function of wavelength. Please note that this is a sample spectrum and that small variations may occur from unit to unit. The fine structure seen around 2.7 µm is due to water and CO₂ absorption in the beam path of the measurement setup. The sharp dropoff at 4.2 µm is also due to CO₂ absorption.

Supercontinuum Evolution

Simulation of supercontinuum generation in dispersion-engineered InF₃ fiber pumped by a 2.1 µm, 100 fs source. (See Opt. Express 2015 Nov 16; 23 (24): 30592 - 30602.)