5 August 2020

OSA Quantum 2.0 Keynote Speakers to Introduce Latest Breakthroughs with Quantum Technologies

Conference will feature high-impact presentations by experts on quantum research and commercial development

WASHINGTON – Distinguished keynote speakers from academia and industry will present latest developments in quantum systems and quantum computing at the inaugural OSA Quantum 2.0 conference to be co-located as an all-virtual event with OSA Frontiers in Optics and Laser Science APS/DLS (FiO + LS) conference 14 – 17 September. The meetings are available at no cost to registrants.

Ignacio Cirac, director of the Theory Division at the Max Planck Institute of Quantum Optics and Honorary Professor at the Technical University of Munich, will introduce two quantum algorithms to determine finite energy and temperature properties of many-body quantum systems. In his talk, Cirac will explain how both can be used with Noisy Intermediate Scale Quantum (NISQ) and analog quantum simulators.

While the demonstration of a universal, fault-tolerant, quantum computer remains a goal, it has informed the design of a prototype. Marissa Giustina, senior research scientist and quantum electronics engineer in the Google AI Quantum, USA, will introduce Google’s quantum computing effort from both hardware and quantum-information perspectives in her plenary talk titled “Building Google’s Quantum Computer.”

In his talk titled “Quantum Technologies for Long-Term Data Security,” Gregoire Ribordy, co-founder and CEO of ID Quantique, Switzerland, will describe solutions to the threat of quantum computing to our information security infrastructure. He will review the current state of the art of practical quantum key distribution and quantum random number generators. Ribordy will also discuss current areas of research and present examples of applications and use cases.

Plenary speaker Mikhail Lukin, co-director of the Harvard Quantum Initiative in Science and Engineering and co-director of the Harvard-MIT Center for Ultracold Atoms, USA, will describe the recent advances involving programmable, coherent manipulation of quantum many-body systems using atom arrays excited into Rydberg states. In his talk, Lukin will also discuss progress towards realization of quantum repeaters for long-distance quantum communication.  

Technical sessions will be presented live from the Eastern Daylight Time Zone (EDT) with a recorded archive available later for on-demand viewing. The keynote talks are scheduled for 10:00 – 10:45 EDT, 14 – 17 September.

Industry and academic leaders will discuss new approaches for training current and future quantum engineers in a panel titled “Workforce Development in Quantum Science and Technology” to be held Tuesday, 15 September, 15:45 – 16:45 EDT.

The all-virtual Quantum 2.0 conference will bring together scientists, engineers and others working to advance quantum science and the technical innovations needed to introduce practical quantum technologies and ultimately commercializable products based on Quantum 2.0 to market. Academic, government and industry researchers will have the opportunity to interact and discover common ground, and potentially build collaborations leading to new concepts or development opportunities.

Key topic areas include Quantum Computing & Simulation; Quantum Communication Systems; Quantum Metrology & Sensors; Hybrid Systems; Quantum Interconnects; Quantum Photonic Sources & Detectors; Integrated-optics Quantum Platforms & Devices; Optical & Laser Technology for QIST Systems. Conference registration is now open.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact