OPTICS = ??

But also,

Fiber-optic communications

Display Technology

Night vision goggles

Sight-saving technology
Sight-Saving Optics-Based Technologies

Refractive Surgery (e.g., LASIK)

Intraocular Lens Implant Surgery

Retinal Imaging Technologies
LASer In-situ Keratomileusis (LASIK)

- Laser etching of corneal surface to replace eyeglasses

1. Specialized camera creates nanometer-scale map of ocular imperfections

2. 1st laser (infrared) cuts partway through cornea to create flap

3. 2nd laser (ultraviolet) creates corrected corneal shape

- Approximately 700,000 procedures/year in the US
Intra-Ocular Lens (IOL) Implant Surgery

• Age-related cataract is the leading cause of visual impairment among elderly persons, affecting more than 20.5 million Americans
• IOL surgery most frequently performed surgical procedure in the Medicare-insured population

1. Specialized camera measures corneal refractive power
2. Correct power IOL is chosen and inserted through small incision
3. IOL expands to replace natural lens

• Nearly 1/3 of persons in the United States 69 years or older undergo this procedure in at least 1 eye
Many therapeutic ophthalmic technologies (e.g. LASIK, IOL surgery) had rapid commercial development.

Diagnostic technologies often have longer-term value proposition.

Many ophthalmic imaging techniques have been significantly aided by government-funded academic and small business research prior to commercial success.

Prime example: Optical Coherence Tomography (OCT)

Optical Coherence Tomography (OCT)

Cross-Sectional Retinal Imaging (video rate)

3D Retinal Imaging (3-4 seconds)
OCT Clinical Utility

Example: Age-Related Macular Degeneration (AMD)

- More than 1.75M Americans have AMD; risk in population over 75 is ~30%

Effect on eyesight

Standard Retinal Exam Photo

OCT Retinal Cross Section

OCT Displaces Conventional Diagnostics

Annotation of pathology on OCT 3D dataset:

- Borders of RPE disruption
- Cystoid macular edema
- Retinal thickening
- Sub-retinal fluid

Correlates with results of conventional tests:

- Fluorescein Angiography: hyperfluorescence confined to margin of RPE disruption
- Microperimetry: Poor retinal sensitivity extends to margins of retinal thickening

Critical need: technologies for automated 3D image analysis for early diagnosis

OCT Development Timeline

Scientific Publications

First scientific article
First commercial product
OCT CPT code
>10 commercial vendors
Technology displacement

In 2010:
- Total OCT reimbursements in US >$750M
- ~23% of Medicare beneficiaries >65yo had OCT
- OCT used between 3% and 12% of total ophthalmology clinic visits

Medicare Covered Eye Exams

36% annual growth rate 2000-2009
>$1B OCT worldwide market

OCT Citations in Web of Science

Allowed CPT 92135 Medicare Services vs Year

36% annual growth rate 2000-2009
>$1B OCT worldwide market
US Government Funding and ROI

Federal OCT R&D Investment
- All US gov’t funding ~$500M over last 10 years
- National Institutes of Health (NIH) total ~$340M
 - National Eye Institute ~$130M

ROI for Ophthalmic OCT
- New/less invasive standard of care for diagnosis and treatment monitoring of major blinding diseases
 - Macular degeneration
 - Diabetic retinopathy
 - Glaucoma
- Reimbursed cost per exam less than alternative tests and decreasing further[^4]
- Approaching $1B/yr US market
Commercialization of Retinal OCT

1995-2005: 1st Generation Technology
Carl Zeiss Meditec (Dublin, CA)

2005- Now >10 Manufacturers Worldwide
2nd Generation Technology

Carl Zeiss Meditec
OptoVue
Topcon
Optopol
Ophthalmic Technologies, Inc
Bioptigen, Inc.
Heidelberg Engineering
Bioptigen, Inc.

- Duke University spinoff company founded 2004
- Employs 19 North Carolinians
- 2007 Frost & Sullivan Excellence in Research Award
- Received 5 Phase I SBIR, 4 Phase II SBIR grants enabling product development

Research-grade OCT systems for emerging applications

- Hand-held imaging for babies, children, bedridden patients
- Small animal imaging for basic research and drug development

Next-Generation Ophthalmic OCT Research

Eliciting retinal function from blood flow imaging
(University of California/Cal Tech)

Improving retinal surgery using intra-operative OCT
(Duke University)

Cone cell dynamics using adaptive-optics technology
(Indiana University)

Acknowledgments

Duke BME
Derek Nankivill
Francesco LaRocca
Shwetadwip Choudhury
Stephanie Chiu
Ryan McNabb
Hansford Hendargo
Hafeez Dhalla
Justin Migazc
Kenny Tao, Ph.D.
Mingtao Zhao, Ph.D.
Bradley Bower, Ph.D.
Audrey Ellerbee, Ph.D.
Michael Choma, M.D., Ph.D.
Melissa Skala, Ph.D.

Duke Ophthalmology
Cynthia Toth, M.D.
Sina Farsiu, Ph.D.
Anthony Kuo, M.D.
Ramiro Maldonado, M.D.
Justis Ehlers, M.D.
Paul Hahn, M.D.

AREDS 2 Ancillary
SDOCT Study (C. Toth, PI)
Emily Chew, M.D., NEI
Wai Wong, M.D., Ph.D., NEI
Thomas Huang, M.D., Devers
Baker Hubbard, M.D., Emory

NIH Biomedical Research Partnership Collaboration
UC Davis Ophthalmology
Jack Werner, Ph.D.
Robert Zawadzki, Ph.D.
Indiana University
Donald Miller, Ph.D.
Lawrence Livermore National Laboratory
Scot Olivier, Ph.D.

Funding
National Institutes of Health
R01 EY014743, R21 EY019411, R21 EY020001, R21 EY02132, R21 EB006338

National Science Foundation
CBET 0933059

Army Research Office
W911NF-04-D-0001-09

Coulter Foundation, The Hartwell Foundation

Financial Interest Disclosure
- Financial interest (Co-founder)
 - Bioptigen, Inc.
- Licenses/Royalties
 - Carl Zeiss Meditec
 - Lightlab Imaging
References