Optical Trapping Applications (OTA)

OSA Topical Meeting and Tabletop Exhibit

Collocated with

Digital Holography and Three-Dimensional Imaging (DH)
Fourier Transform Spectroscopy (FTS)
Hyperspectral Imaging and Sensing of the Environment (HISE)
Novel Techniques in Microscopy (NTM)

Exhibition: April 27-29, 2009
Sheraton Vancouver Wall Centre Hotel
Vancouver, BC, Canada

PDP Submissions Deadline: April 2, 2009, 12:00 p.m. noon, EDT (16.00 GMT)
Housing Deadline: March 25, 2009
Pre-Registration Deadline: April 1, 2009

2009 Meeting Chairs

Carlos Lopez-Mariscal, NIST, USA, Chair
David McGloin, Univ. of Dundee, UK, Chair

About Optical Trapping Applications

Different optical trapping schemes are widely used to uncover aspects of matter-light interactions in the microscopic and submicroscopic domains. A broad range of physical and biological phenomena are elucidated in more detail thanks to the use of these schemes. This meeting explores the applications of novel optical trapping and manipulation techniques, including the use of evanescent fields, plasmonics, microfluidics, integrated lab-on-a-chip technologies, parallel optical sorting, innovation in optical methods for cellular biology and the current state of the art in fundamental concepts of optical trapping.

Topics to Be Considered

- Sorting
- Microfluidics
- Plasmonic Interactions
- Optical Landscapes
- Parallel Manipulation
- Fundamental Concepts
- Manipulation of Biological Structures
- Novel Imaging
- Noise Suppression
- Particle Tracking
- High Accuracy Position Sensing
About Optical Trapping Applications

Different optical trapping schemes are widely used to uncover aspects of matter-light interactions in the microscopic and submicroscopic domains. A broad range of physical and biological phenomena are elucidated in more detail thanks to the use of these schemes. This meeting explores the applications of novel optical trapping and manipulation techniques, including the use of evanescent fields, plasmonics, microfluidics, integrated lab-on-a-chip technologies, parallel optical sorting, innovation in optical methods for cellular biology and the current state of the art in fundamental concepts of optical trapping.
Topics to Be Considered

- Sorting
- Microfluidics
- Plasmonic Interactions
- Optical Landscapes
- Parallel Manipulation
- Fundamental Concepts
- Manipulation of Biological Structures
- Novel Imaging
- Noise Suppression
- Particle Tracking
- High Accuracy Position Sensing
Program Committee

Program Committee Members

Carlos Lopez-Mariscal; NIST, USA, Co-Chair
David McGloin; Univ. of Dundee, UK, Co-Chair

Advisory Committee

Brooke Hester; Univ. of Maryland at College Park, USA
Romain Quidant; Inst. of Photonic Sciences (ICFO), Spain
Pavel Zemanek; Inst. of Scientific Instruments, Czech Republic
ABB
Analytical Business Unit
585, boulevard Chrest E., Suite 300
Quebec, QC CANADA G1K 9H4
Tel: +1 418.877.2944 ext. 356
Fax: +1 418.877.2834
www.abb.com/analytical

With more than 35 years of experience in infrared spectroscopy, ABB Analytical
counts several projects in Defense & Security and Space success stories,
positioning her at the forefront of the Remote Sensing Industry as an international
leader. ABB Analytical designs, manufactures and markets high-performance FT-IR
and FT-NIR analytical systems and spectrometers for Petroleum, Chemical, Life

Amplitude Laser Inc.
One Broadway
Cambridge, MA 02142
Tel: 619.303.3022 (West Coast Office)
Tel: 617.401.2195 (Boston Office)
Cell Phone: 619.621.9111
rbraunschweig@amplitude-laser.com
http://www.amplitude-laser.com
www.amplitude-laser.com

Amplitude Laser is the US based subsidiary for Amplitude Systemes, pioneer in
Ytterbium laser technology, manufactures advanced diode-pumped ultrafast lasers
for scientific and industrial applications. Products include high energy oscillators (t-
Pulse series), amplifiers (s-Pulse series) and fiber amplifiers (Tangerine and
Satsuma series). Contact: Robert Braunschweig, US Sales Manager,
rbraunschweig@amplitude-laser.com; Eric Mottay, President & Chief Executive
Officer, emottay@amplitude-systemes.com.

Channel Systems
Box 188, 402 Ara Mooradian Way
Pinawa, Manitoba R0E 1L0
CANADA
Tel: +1 204.753.5190
Fax: +1 204.753.5199
info@channelsystems.ca
www.channelsystems.ca

Channel Systems is your complete scientific imaging solution source. We
specialize in spectral cameras for UV, VIS, NIR, MWIR and LWIR. Systems are
based on imaging spectrographs and liquid crystal tunable filters. We supply a
complete line of Infrared Cameras (Xenics) and Visible Cameras (Basler). We
offer a full line of accessories including lighting, lenses, software and scanners.
Our application engineering services ensure you get the best technology for your
research at the best cost.
Imagine Optic
18 rue Charles de Gaulle
91 400 Orsay, France
Tel : +33 (0)1 64 86 15 60
Fax : +33(0)1 64 86 15 61
jballesta@imagine-optic.com
www.imagine-optic.com

Imagine Optic is a provider of high performances Shack-Hartmann wavefront sensing, adaptive optics technologies and associated professional services. For over 12 years, Imagine Optic has been accompanying academic and industrial researchers around the world in their work to help them improve upon the results they’re already achieving. Currently our adaptive optics for microscopy are being used to improve the performance of various types of microscopy and the technology’s maturation has made it accessible to researchers everywhere.

Photonics Media
Laurin Publishing
2 South Street, Berkshire Common
Pittsfield, MA 01201 USA
Tel: 413.499.0514
Fax: 413.442.3180
photonics@laurin.com
www.photonics.com
Photonics Media is Laurin Publishing Company’s international suite of media and as such the pulse of the industry. More than 50 years as the leading publications. In print with the Photonics Directory, Photonics Spectra, Biophotonics International, EuroPhotonics, and Photonics Showcase magazines and online at Photonics.com.

Telops Inc.
100-2600 avenue St-Jean-Baptiste
Quebec (Quebec) Canada G2E 6J5
P : 418.864.7808
F: 418.864.7843
www.telops.com

Telops specializes in the design and production of sophisticated opto-electronic systems for the defence, aerospace and telecommunications industries. In addition to providing specialized opto-electronic engineering services, Telops has developed the Hyper-Cam, an infrared hyperspectral imager which allows standoff chemical detection and identification at a distance of up to five kilometers. We thrive on high expectations and great challenges. Our technical experts understand your business and their diverse backgrounds represent a powerful source of innovation.

The organizers of the Advances in Imaging Congress and Tabletop Exhibit wish to acknowledge the following for their support:

Grants:
- Air Force Office of Scientific Research (AFOSR)
- National Aeronautics and Space Administration (NASA)
- National Institute of Biomedical Imaging and Bioengineering/Department of Health and Human Services / National Institutes of Health
- The OSA Foundation

Corporate Sponsors:
Special Events

Meet the Applied Optics Editors Dinner

Date: April 28, 2009
Time: 7:00 PM
Where: The Relish Restaurant & Lounge, 888 Nelson ST. (Between Hornby & Howe), Vancouver, BC, Canada
(Website: http://www.relishrestaurants.com/relish/index.asp).

Don't miss this great opportunity to meet Applied Optics Information Processing Editors:

Prof. T.-C. Poon (Division Editor, Virginia Tech)
Prof. Partha P. Banerjee (Topical Editor, Univ. of Dayton)
Prof. Byoungho Lee (Topical Editor, Seoul National Univ., Korea)

All conference attendees, especially students, are invited to this casual networking dinner. You can sign-up onsite at the OSA Registration Desk at the Grand Ballroom Foyer Coatroom. Please RSVP by Tuesday, April 28 by 1:00 pm. **Please note: Participants pay for their own dinners.**
OSA GROUP DINNER

Have Dinner with *Applied Optics* Editors

Students are Welcome!

All OSA conference attendees are invited to a casual networking dinner where you will have the opportunity to meet *Applied Optics Information Processing* Editors:

- Prof. T.- C. Poon (Division Editor, Virginia Tech)
- Prof. Partha P. Banerjee (Topical Editor, Univ. of Dayton)
- Prof. Byoungho Lee (Topical Editor, Seoul National Univ., Korea)

Tuesday, April 28, 2009, 7:00 p.m.

THE RELISH RESTAURANT & LOUNGE

888 Nelson St. (between Hornby & Howe) Vancouver, BC

Sign up at the OSA Registration Desk

[Grand Ballroom Foyer, Coat Room]

by 1:00 p.m. on Tuesday, April 28

Note: Participants pay for their own dinners

Sponsored by the OSA External Relations Advisory Group
Invited Speakers

Optical Trapping Applications (OTA) / Digital Holography and Three-Dimensional Imaging (DH) Joint Session

Three-Dimensional Imaging by Three-Dimensional Point Spread Function Encoding, Rafael Piestun; Univ. of Colorado at Boulder, USA.

Optoelectronic Trapping of Cells, Nanowires, and Nanoparticles, Ming C. Wu; Univ. of California at Berkeley, USA.

Invited Speakers

Microrheology of the Endothelial Glycocalyx and Extracellular Matrix, Elliot Botvinick; Univ. of California at Irvine, USA.

Advances in the Biological Applications of Optical Micromanipulation, Daniel Chiu; Univ. of Washington, USA.

Life at the Edge: Optical Force Probe Measurements of the Pericellular Coat, Jennifer Curtis; Georgia Tech, USA.

Optical Tweezers Shed Light on Cell Motility, Eric Dufresne; Yale Univ., USA.

Single Molecule Studies of DNA Hybridization Kinetics within Optically Trapped Femtoliter Droplets, Ana Jofre; Univ. of North Carolina at Charlotte, USA.

Optical Trapping and Manipulation of Aerosols, Jonathan Reid; Univ. of Bristol, UK.

Colloidal Statistical Mechanics in Optical Vortices, Yael Roichman; Tel Aviv Univ., Israel.

Optical Tweezers: From Matter Physics to Biological Applications, Giulia Rusciano; Univ. of Naples, Italy.

Insights into Statistical Physics by Optically Trapped Particles, Giovanni Volpe; Inst. of Photonic Sciences (ICFO), Spain.
<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Grand Ballroom A</th>
<th>Junior Ballroom D</th>
<th>Junior Ballroom C</th>
<th>Grand Ballroom B</th>
<th>Junior Ballroom A/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, April 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 p.m.–6:00 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Registration Open, Grand Ballroom Foyer Coatroom</td>
</tr>
<tr>
<td>Monday, April 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Registration Open, Grand Ballroom Foyer Coatroom</td>
</tr>
<tr>
<td>7:30 a.m.–6:30 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 a.m.–10:30 a.m.</td>
<td>DMA • Advances in Digital Holography</td>
<td></td>
<td>JMA • FTS/HISE Joint Session</td>
<td>NMA • Superresolution I</td>
<td>OMA • Transport, Guiding and Sorting</td>
<td></td>
</tr>
<tr>
<td>10:30 a.m.–11:00 a.m.</td>
<td>Coffee Break, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 a.m.–4:30 p.m.</td>
<td>Exhibits Open, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 a.m.–12:30 p.m.</td>
<td>DMB • Novel Technologies in Holography (ends at 1:00 p.m.)</td>
<td></td>
<td>FMA • James W. Brault Memorial Session</td>
<td>HMA • Climate Absolute Radiance and Refractivity Observatory</td>
<td>NMB • Superresolution II</td>
<td>OMB • Physics Insights by Means of Optical Trapping I</td>
</tr>
<tr>
<td>12:30 p.m.–2:00 p.m.</td>
<td>Lunch Break (on your own)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 p.m.–4:00 p.m.</td>
<td>JMB • DH/OTA Joint Session</td>
<td></td>
<td>FMB • Combs and Static FTS</td>
<td>HMB • Clouds and Aerosols I</td>
<td>NMC • Nonlinear Microscopy I</td>
<td></td>
</tr>
<tr>
<td>4:00 p.m.–4:30 p.m.</td>
<td>Coffee Break/Exhibits, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:30 p.m.–6:00 p.m.</td>
<td>DMC • Metrology by Digital Holography and Profilometry (ends at 6:15 p.m.)</td>
<td></td>
<td>FMC • Space and Flight Projects</td>
<td>HMC • Future Missions and Sensor Calibration</td>
<td>NMD • Nonlinear Microscopy II</td>
<td>OMC • Physics Insights by Means of Optical Trapping II</td>
</tr>
<tr>
<td>6:00 p.m.–8:00 p.m.</td>
<td>Conference Reception, Junior Ballroom Foyer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday, April 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30 a.m.–6:30 p.m.</td>
<td>Registration Open, Grand Ballroom Foyer Coatroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 a.m.–10:30 a.m.</td>
<td>JTuA • DH/NTM Joint Session: Digital Holographic Microscopy</td>
<td></td>
<td>FTuA • FTS for Astronomy and Astrophysics</td>
<td>HTuA • Interpretation of Hyperspectral/Multispectral Data Through Observations and Simulations</td>
<td>OTuA • Biophotonics Applications</td>
<td></td>
</tr>
<tr>
<td>10:30 a.m.–11:00 a.m.</td>
<td>Coffee Break, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 a.m.–6:00 p.m.</td>
<td>Exhibits Open, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 a.m.–12:30 p.m.</td>
<td>DTuA • Holographic Microscopy</td>
<td></td>
<td>FTuB • Combs, Optical Fiber and Fast-Scanning</td>
<td>HTuB • Particle Scattering Models</td>
<td>NTuA • Phase Microscopy and Tomography</td>
<td>OTuB • Novel Uses and Applications</td>
</tr>
<tr>
<td>12:30 p.m.–2:00 p.m.</td>
<td>Lunch Break (on your own)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 p.m.–4:00 p.m.</td>
<td>DTuB • Holography Applications</td>
<td></td>
<td>FTuC • Gosat and Akari</td>
<td>HTuC • New Remote Sensing Perspectives</td>
<td>NTuB • Optical Coherence Tomography</td>
<td>OTuC • Dynamics of Multiple and Parallel Trapping (ends at 3:30 p.m.)</td>
</tr>
<tr>
<td>4:00 p.m.–4:30 p.m.</td>
<td>Coffee Break/Exhibits, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:30 p.m.–6:00 p.m.</td>
<td>JTuB • DH/FTS/HISE/NTM/OTA Joint Poster Session, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00 p.m.–6:45 p.m.</td>
<td>DTuC • Optical Scanning Holography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Grand Ballroom A</td>
<td>Junior Ballroom D</td>
<td>Junior Ballroom C</td>
<td>Grand Ballroom B</td>
<td>Junior Ballroom A/B</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>7:30 a.m.–6:30 p.m.</td>
<td>Registration Open, Grand Ballroom Foyer Coatroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 a.m.–10:30 a.m.</td>
<td>DWA • Three-Dimensional Imaging and Display</td>
<td>FWA • Earth Sensing</td>
<td>HWA • Hyperspectral IR and Imager Data Analyses (ends at 10:00 a.m.)</td>
<td>NWA • New Techniques I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 a.m.–11:00 a.m.</td>
<td>Coffee Break, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30 a.m.–12:30 p.m.</td>
<td>Exhibits Open, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 a.m.–12:30 p.m.</td>
<td>DWB • DH Poster Session, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 a.m.–12:30 p.m.</td>
<td>FWB • Visible and Ultra Violet</td>
<td>HWB • Clouds and Aerosols II</td>
<td>NWB • Superresolution III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30 p.m.–2:00 p.m.</td>
<td>Lunch Break (on your own)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 p.m.–4:00 p.m.</td>
<td>DWC • Computer-Generated Holograms</td>
<td>FWC • Spatial Heterodyne</td>
<td>HWC • Validation of Cloud and Aerosol Products</td>
<td>NWC • Endomicroscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 p.m.–4:30 p.m.</td>
<td>Coffee Break, Grand Ballroom C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:30 p.m.–6:30 p.m.</td>
<td>DWD • Electro-Holography and Computer-Generated Holography</td>
<td>FWD • Laboratory and Miniature FTS (ends at 6:00 p.m.)</td>
<td>HWD • Hyperspectral Applications (ends at 6:00 p.m.)</td>
<td>NWD • New Techniques II (ends at 5:30 p.m.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday, April 30</td>
<td>Registration Open, Grand Ballroom Foyer Coatroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30 a.m.–10:30 a.m.</td>
<td>FThA • Spectral Imaging, Grand Ballroom A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key to Shading

<table>
<thead>
<tr>
<th>DH Sessions</th>
<th>No Shading</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTS Sessions</td>
<td></td>
</tr>
<tr>
<td>HISE Sessions</td>
<td></td>
</tr>
<tr>
<td>NTM Sessions</td>
<td></td>
</tr>
<tr>
<td>OTA Sessions</td>
<td></td>
</tr>
</tbody>
</table>
Optical Trapping Applications (OTA) Abstracts

- **Sunday, April 26, 2009**
 Grand Ballroom Foyer Coatroom
 3:00 p.m.–6:00 p.m.
 Registration Open

- **Monday, April 27, 2009**
 Grand Ballroom Foyer Coatroom
 7:30 a.m.–6:30 p.m.
 Registration Open

OMA • Transport, Guiding and Sorting

Junior Ballroom A/B
8:30 a.m.–10:30 a.m.
Carlos Lopez-Marsial; NIST, USA, Presider

OMA1 • 8:30 a.m. Invited
Micro rheology of the Endothelial Glycocalyx and Extracellular Matrix, Sanmir Shreim, Maxwell Kotlarchyk, Elliot Botvinick; Univ. of California at Irvine, USA. Our lab is constructing photonic systems to seek correlates between cell signaling and laser-induced mechanical stresses as well as laser-based measurements of deformation and mechanical properties in engineered tissues.

OMA2 • 9:00 a.m. Invited
Advances in the Biological Applications of Optical Micromanipulation, Daniel Chiu; Univ. of Washington, USA. This presentation will describe some of our recent work at the interface of optics and microfluidics, the development of techniques at this interface, and application of these methods towards studying problems in chemistry and biology.

OMA3 • 9:30 a.m.
Calculations of Torques on Particles in Laguerre-Gaussian Beams, Stephen H. Simpson, Simon Hanna; Univ. of Bristol, UK. The angular momentum transferred by Laguerre-Gaussian beams is calculated using the T-matrix method, and a simple formula derived for the induced torque. Coupling mechanisms are compared for weakly absorbing spheres, non-absorbing spheroids, and birefringent spheres.

OMA4 • 9:45 a.m.
Optical Tweezers and Integrated Waveguide System for Cell Selection and Transport in Polymer Microfluidic Devices, Luc G. Charron, Duoaad Shah, Lothar Lile; Princess Margaret Hospital, Univ. of Toronto, Canada. A laser-based optical system for cell selection and passive transportation inside a polymer microfluidic device is presented. Optical tweezers and integrated waveguides are used to select and transport multiple cells in a network of channels.

OMA5 • 10:00 a.m.
Using Holographic Optical Tweezers to Measure Forces with AFM-Like Probes, David M. Carberry1, Leo Ikin1, James A. Greve1, Simon Hanna1, Graham M. Gibson1, Miles J. Padgett2, Mervyn J. Miles3; 1Univ. of Bristol, UK, 2Univ. of Glasgow, UK. We demonstrate the optical assembly and control of SPM-like probes, using holographic optical tweezers. We show that these probes can exert a force in excess of 60pN with a force sensitivity of 50fN.

OMA6 • 10:15 a.m.
Controlled Particle Guidance in a Liquid-Filled Single-Mode Hollow-Core Photonic Crystal Fiber, Martin K. Karbys, Tijmen G. Euser, Jocelyn S. Y. Chen, Philip St. J. Russell, Max Planck Inst. for the Science of Light, Germany. We present controlled optical trapping and guidance of silica microparticles in the fundamental mode of D2O-filled hollow-core PCF, and show that a particle can be held stationary against an opposing fluid flow using optical propulsion.

Grand Ballroom C/D
10:30 a.m.–11:00 a.m.
Coffee Break/Exhibits

OMB • Physics Insights by Means of Optical Trapping II

Junior Ballroom A/B
11:00 a.m.–12:30 p.m.
David McGloin; Univ. of Dundee, UK, Presider

OMB1 • 11:00 a.m. Invited
Optical Tweezers: From Soft-Matter Physics to Biological Applications, Giulia Rusciano; Univ. of Naples, Italy. Optical tweezers have recently emerged as an interesting tool for performing advanced biophysical/biomechanical characterizations of bioystems. Here, we discuss on the application of this emerging technology to various systems, including erythrocytes, liposomes and starfish oocytes.

OMB2 • 11:30 a.m.
Optical Tweezing Red-Shifted from Resonance, Brooke C. Hester1, Rani Kishore1, Kristian Helmerson1, Carly Levin2, Naomi J. Halas3; 1NIST, USA, 2Dept. of Electrical and Computer Engineering, Rice Univ., USA. We study the enhancement of optical forces associated with optical trapping red-shifted from resonance absorption. Particles with tunable resonances are manipulated using a single-focus optical trap with tunable wavelength, and studied using back- focal-plane interferometry.

OMB3 • 11:45 a.m.
Position and Intensity Modulations in Holographic Optical Traps Created by a Liquid Crystal Spatial Light Modulator, Astrid van der Horst, Benjamin P. B. Douweing, Nancy R. Forde; Simon Fraser Univ., Canada. The addressing of the liquid crystals in spatial light modulators gives rise to temporal modulation of the phase pattern.
Here we investigate the effect of this on the intensity and position of holographic optical traps.

OMB4 • 12:00 p.m.
Multiple Trapping with Optical Bottle Beam, Vladlen G. Shvedov1,2,3, Andrei V. Rode1, Yana V. Izdebskaya2,3, Anton S. Desyatnikov1, Wieslaw Z. Krolikowski2, Yuri S. Kivshar2; 1Laser Physics Ctr., RSPhsE, Australian Natl. Univ., Australia, 2Nonlinear Physics Ctr., RSPhsE, Australian Natl. Univ., Australia, 3Taurida Natl. Univ., Ukraine. We report on multiple optical trapping of particles in air using random phase optical bottle beam. The particles were trapped in micro-cavities of a speckle pattern in a macro-trap formed by the bottle beam.

OMB5 • 12:15 p.m.

12:30 p.m.–2:00 p.m.
Lunch Break (on your own)

JMB • DH/OTA Joint Session

Grand Ballroom A

2:00 p.m.–4:00 p.m.
Christian Depeursinge; École Polytechnique Fédérale de Lausanne, Switzerland, Presider

JMB1 • 2:00 p.m. Invited
Optoelectronic Trapping of Cells, Nanowires, and Nanoparticles, Ming C. Wu; Univ. of California at Berkeley, USA. The principle and recent experimental results of optoelectronic tweezers (OET) will be presented. Based on light-induced dielectrophoresis, OET can trap and sort colloidal particles, biological cells, nanowires and nanoparticles using a digital light projector.

JMB2 • 2:30 p.m. Invited
Three-Dimensional Imaging by Three-Dimensional Point Spread Function Encoding, Rafael Pietschn; Univ. of Colorado at Boulder, USA. Pupil-encoded point spread functions are implemented for three-dimensional image data acquisition. These systems are passive and work under broadband illumination. Applications include nanolocalization of small emitters and machine vision.

JMB3 • 3:00 p.m. Invited
Optical Tweezers Shed Light on Cell Motility, Eric Dufresne; Yale Univ., USA. Optical tweezers are an elegant platform for the biochemical and mechanical stimulation of live cells. I will discuss the application of holographic optical tweezers to chemotaxis in neutrophils and mechanotransduction in neurons.

JMB4 • 3:30 p.m.
Motility-Contrast Imaging: Digital Holography of Cellular Motion in 3-D Tissues, David D. Nolte, John Turek; Purdue Univ., USA. We present the first three-dimensional assays of intrinsic cellular motion applied to tissues using motility contrast imaging (MCI), a new digital holographic imaging technique that detects sub-cellular motion as a novel fully-endogenous imaging contrast agent.

JMB5 • 3:45 p.m.
Application of 3-D Tracking, Multi-Wavelength Techniques and Color Imaging in Digital Holographic Microscopy, Björn Kemper1, Patrik Langehanenberg1, Sebastian Kosmeier1, Xiaoli Mo1, Sabine Przibilla1, Angelika Vollmer1, Steffi Ketelhut1, Jinghui Xie2, Gert von Ballyi; 1Ctr. for Biomedical Optics and Photonics, Univ. of Muenster, Germany, 2School of Information Science and Technology, Beijing Inst. of Technology, China. In an overview results obtained by digital holographic microscopy demonstrate 3-D-tracking of cells without mechanical focus realignment, reduction of amplitude and phase noise by using multi-wavelength techniques and prospects for subsequent refocusing of color images.

Grand Ballroom C/D

4:00 p.m.–4:30 p.m.
Coffee Break/ Exhibits

OMC • Physics Insights by Means of Optical Trapping II

Junior Ballroom A/B

4:30 p.m.–6:00 p.m.
Brooke C. Hester; NIST, USA, Presider

OMC1 • 4:30 p.m. Invited
Colloidal Statistical Mechanics in Optical Vortices, Yad Roichman, David G. Grier; Tel Aviv Univ., USA. Holographic optical tweezers can be used to create a variety of optical landscapes in which particles can be trapped and driven. We study particles driven by optical vortices in the framework of non-equilibrium statistical mechanics.

OMC2 • 5:00 p.m.
Thermal Motion of Optically Trapped Nanotools, Stephen H. Simpson, Mervyn J. Miles, Simon Hanau; Univ. of Bristol, UK. Calculations of hydrodynamic resistance and mechanical susceptibility for complex particles held in multiple optical traps are presented. The subsequent thermal motion is quantified and the implications for a novel form of force microscopy are discussed.

OMC3 • 5:15 p.m.
High-Speed Camera Particle Tracking and Force Measurement, with Real-Time Haptic Feedback, Richard W. Bauman1, Cécile Pacoret1,2,3, D. Sinan Halijot2, Stéphane Régnier3, Graham M. Gibson1, Miles J. Padgett4; 1Dept. of Physics, Univ. of Glasgow, UK, 2Inst. des Systèmes
Intelligents et de Robotique, Pierre et Marie Curie Univ., France, ²CEA-LIST, Sensory Interfaces Lab, France. Modern cameras can provide real-time position and force measurement of multiple trapped particles at several kHz. We investigate the accuracy and stability of this method and use it to implement a force-feedback interface.

OMC4 • 5:30 p.m.
Optical Tweezers for Velocity Mapping in Microfluidic Channels, Jing Wu, Daniel Day, Min Gu; Ctr. for Micro-Photonics, Swinburne Univ. of Tech., Australia. We have successfully applied an optical tweezer for mapping the velocity profile in microfluidic channels. The velocity profiles for a straight and a u-shaped microfluidic channels were determined by direct measurement of the Stokes force.

OMC5 • 5:45 p.m.
Wavelength Dependence of Optical tweezer Trapping Forces on Resonant Particles, Mark J. Kendrick, David H. McIntyre, Oksana Ostroverkhova; Dept. of Physics, Oregon State Univ., USA. Optical tweezers are typically used with transparent dielectric particles. Particles with optical resonances should experience a larger trapping force near resonance. We present a numerical and experimental study of the trapping forces on such particles.

Junior Ballroom Foyer
6:30 p.m.–8:00 p.m.
Conference Reception

Tuesday, April 28, 2009

Grand Ballroom Foyer Coatroom
7:30 a.m.–6:30 p.m.
Registration Open

OTuA • Biophotonics Applications

Junior Ballroom A/B
8:30 a.m.–10:30 a.m.
Giovanni Volpe; Inst. of Photonic Sciences (ICFO), Spain, Presider

OTuA1 • 8:30 a.m.

Invited

Optical Manipulation of Femtoliter Aqueous Droplets for Nanochemistry Applications, Ana Jofre, Ben Faulk, Jason Case; Univ. of North Carolina at Charlotte, USA. We control and observe femtoliter volume reactions within aqueous nanodroplets. Chemical reagents sequestered in the nanodroplets mix when the nanodroplets are fused via optical manipulation. The subsequent reaction is probed by means of fluorescence excitation.

OTuA2 • 9:00 a.m.

Invited

Life at the Edge: Optical Force Probe Measurements of the Pericellular Coat, Jennifer Curtis; Georgia Tech., USA. The pericellular coat plays a prominent and possibly mechanical role in modulating cell adhesion during cell migration and proliferation. We report on the cell coat’s mechanics and structure evaluated using optical tweezer force probe studies.

OTuA3 • 9:30 a.m.

Probing the Elasticity of Short Proteins with Optical Tweezers, Benjamin P. B. Downing1, Astrid van der Horst1, Ming Miao1, Fred W. Keeley1, Nancy R. Forde2; 1Dept. of Physics, Simon Fraser Univ., Canada, 2Molecular Structure and Function Programme, Hospital for Sick Children, Univ. of Toronto, Canada, Dept. of Biochemistry, Univ. of Toronto, Canada. Probing relatively short proteins, such as elastin (~200 nm), with optical tweezers requires manipulating trapped polystyrene beads at very small separations. We discuss experimental complications arising from this proximity, and our efforts to minimize them.

OTuA4 • 9:45 a.m.

Transport of Multi-Particle Clusters by Motional Standing Wave Optical Traps, Martin Šílér1, Tomas Čížnár1,2, Pavel Zemánek1; 1Inst. of Scientific Instruments, Acad. of Sciences of the Czech Republic, Czech Republic, 2School of Physics and Astronomy, Univ. of St Andrews, UK. Upon illumination with a traveling standing wave, clusters of microparticles bound by scattered laser light can be transported much faster than a single particle.

OTuA5 • 10:00 a.m.

Spiral Beams Based Optical Traps, Kirill Afanasiev, Alexander Korobtsov, Svetlana Kotova, Nikolay Losevsky, Vsevolod Patlan, Eugenia Razueva, Vladimir Volostnikov, Evgeny Vorontsov; P.N. Lebedev Physical Inst., Samara Branch, Russian Federation. The possibility is shown to form light fields with the desired intensity distribution and non-zero angular momentum by means of phase-only diffractive elements based on spiral beams optics. Experimental applications for laser manipulation are presented.

OTuA6 • 10:15 a.m.

New Compact Optical Trapping Device by Using Bessel Beam with a Novel Hybrid Fiber Structure, Jongki Kim1, Yoonseob Jeong1, Sejin Lee1, Woosung Ha1, Rene-Paul Salathe2, Fabrice Merenda1, Yongmin Jung3, Junki Kim1, K. Oh1; 1Yonsei Univ., Republic of Korea, 2Ecole Polytechnique Federale de Lausanne, Switzerland, 3Optoelectronic Res. Ctr., Univ. of Southampton, UK, 4Fraunhofer Inst., Applied Optics and Precision Engineering, Germany. We simulated the Bessel beam generator with special fiber and lens and fabricated the device. We verified the Bessel beam profile and observed the optical trapping on the various Z-axis positions.

Grand Ballroom C/D
10:30 a.m.–11:00 a.m.
Coffee Break/ Exhibits

OTuB • Novel Uses and Applications

Junior Ballroom A/B
11:00 a.m.–12:30 p.m.
Nancy Forde; Simon Fraser Univ., Canada, Presider

OTuB1 • 11:00 a.m.

Invited

Optical Control of Aerosols, Jonathan Reid, Jonathan Wills; Univ. of Bristol, UK. Aerosols play a significant role in many areas of science. We will examine the latest developments in using light to control aerosol and to characterise individual particles, concentrating on optical tweezers and Raman spectroscopy.

OTuB2 • 11:30 a.m.

Laser Trapping in Air by Photophoretic Forces, Vladlen G. Shvedov1,2,3, Anton S. Desyatnikov1, Andrei V. Rode1, Wieslaw Z. Krolkowaski1, Yuri S. Kivshar1; 1Nonlinear Physics Ctr., Australian Natl. Univ., Australia, 2Taurida Natl. Univ., Ukraine, 3Laser Physics Ctr., Australian Natl. Univ., Australia. We report on optical trapping of agglomerates of carbon nanoparticles in air. Stable positioning and guiding of nanoparticles is achieved by photophoretic forces in an optical trap created by two counter-propagating and co-rotating optical vortices.

The Optical Society • www.osa.org • TEL: +1.202.416.1907 • custserv@osa.org
OTuB3 • 11:45 a.m.
Modelling Aerosol Optical Tweezers, Daniel Burnham, David McGlinn; Univ. of Dundee, UK. In this talk we discuss our recent work on the modelling of airborne optical traps, looking at the Brownian motion the particles, but paying particular attention to the optical forces that influence trap behavior.

OTuB4 • 12:00 p.m.
Optical Bottles: Using Light to Confine and Analyze Nanoparticle Suspensions, Joseph Junio, H. Daniel Ou-Yang; Lehigh Univ., USA. We present in this paper a new experimental method termed the optical bottle which uses optical trapping for the determination of the optical trapping energy per particle and the isothermal bulk modulus of the suspension.

OTuB5 • 12:15 p.m.
A Plasmonic Nano-Trap for the Optical Confinement of Quantum Dots,Colm Diseain1, M. Reichtelt1, S. W. Koch1, Jerome V. Moloney2; 1Univ. of Arizona, USA, 2Philips Univ., Germany. We numerically compute the optical forces on a quantum dot, under excitonic resonance conditions, confined to a sub diffraction limited volume in the resonantly enhanced near-field of a suitably engineered metal nano-structure optical trap.

12:30 p.m.–2:00 p.m.
Lunch Break (on your own)

OTuC • Dynamics of Multiple and Parallel Trapping

Junior Ballroom A/B
2:00 p.m.–3:30 p.m.
Giulia Rusciano; Univ. of Naples, Italy, Presider

OTuC1 • 2:00 p.m. Invited
Insights into Statistical Physics by Optically Trapped Particles, Giovanni Volpe; Inst. of Photonic Sciences (ICFO), Spain. An optically trapped Brownian particle moves under the effect of both the random thermal motion and the deterministic optical forces. Therefore it provides a powerful means for the experimental study of certain statistical physics phenomena.

OTuC2 • 2:30 p.m.
Particle Spin Manipulation by Four-Core Single Fiber Optical Tweezers, Zhihai Liu, Yu Zhang, Jun Yang, Libo Yuan; Harbin Engineering Univ., China. We present a novel four-core micro structured single fiber optical tweezers, which can trap, manipulate and even spin trapped micro-particle in 3-D. Simulation and experiment are carried out to support our options.

OTuC3 • 2:45 p.m.
Optically Bound Chain of Microparticles, Oto Brzobohatý1, Vítězslav Karásek1, Pavel Zemánek1, Tomáš Čížnár1,2, Veneranda Garcés-Chávez1, Kishan Dholakia2; 1Inst. of Scientific Instruments of the Acad. of Sciences of the Czech Republic, Czech Republic, 2School of Physics and Astronomy, Univ. of St. Andrews, UK. We present the first creation of extended longitudinally optically bound chains of microparticles in one dimension. Two counter-propagating Bessel beams were used to illuminate the submicrometer sized polystyrene particles immersed in water.

OTuC4 • 3:00 p.m.
Optical Pipeline for Transport of Particles, Vladlen G. Slvodov1, 2,3, Andrei V. Rode1, Yana V. Izdebskaya1, 2,3, Anton S. Desyatnikov2, Wieslaw Z. Krolkowsk1, Yuri S. Kivshar2; 1Laser Physics Ctr., Australian Natl. Univ., Australia, 2Nonlinear Physics Ctr., Res. School of Physics and Engineering, Australian Natl. Univ., Australia, 3Taurida Natl. Univ., Ukraine. We developed an optical pipeline for laser-guiding particles in air using vortex beams. Transport of agglomerates of nanoparticles forward and backward between two optical traps through the optical pipeline over a 60-cm distance was demonstrated.

OTuC5 • 3:15 p.m.
A New Optimized Trapping Method to Create Ultra-Cold and Degenerate Atomic Samples, Philippe Bouyer; Inst. d’Optique Graduate School, CNRS et Univ. Paris Sud, France. An atom laser represents an ideal atomic source for atom optics and interferometry. We present a simple all optical approach to create this atom source where a single laser source at 1560 nm is used.

Grand Ballroom C/D
4:00 p.m.–4:30 p.m.
Coffee Break/Exhibits

JTuB • DH/FTS/HISE/NTM/OTA Joint Poster Session

Grand Ballroom C/D
4:30 p.m.–6:00 p.m.

JTuB30
The Study of Mechanism and Characterization of Cell Interaction in Blood Coagulation by Optical Tweezers, Bor-Wen Yang1, Yu-Hong Mei1, Kui-Teng Huang2; 1Dept. of Opto-Electronic System Engineering, Ming-Hsin Univ. of Science and Technology, Taiwan, 2Inst. of Electrical Engineering, Ming-Hsin Univ. of Science and Technology, Taiwan. Patients with severe diseases like hemophilia, apoplexy and hemorrhage are dependent on the well function of platelets. Optical tweezers are configured to explore the mechanism of blood coagulation and the restoring effects of hemagglutination pharmaceuticals.
JTuB31
Research on Multi Particles Simultaneous Trapping by Single Fiber Optical Tweezers, Zhihai Liu, Yu Zhang, Zhongfu Wu, Jun Yang, Libo Yuan; Harbin Engineering Univ., China. We present an etched-tapered single fiber optical tweezers, which can trap and manipulate two yeast cells in water simultaneously and then the theory analysis, numerical stimulation and experiment implementation are employed to research the trapping.

JTuB32
Optical Trapping Efficiency Measured for Dielectric Particles by Using Cylindrical Vector Beams, Yuichi Kozawa, Shunichi Sato; Inst. of Multidisciplinary Res. for Advanced Materials, Tohoku Univ., Japan. Axial and transverse optical trapping efficiencies were measured by using cylindrical vector beams when a dielectric particle was trapped three-dimensionally. Radially polarized beams showed the highest axial trapping efficiency for a micrometer-sized glass bead.

JTuB33
Holographic Optical Manipulation of Motor-Driven Subcellular Structures, Arnau Farré, Carol López-Quesada, Jordi Andilla, Estela Martín-Badosa, Mario Montes-Usategui; Univ. de Barcelona, Spain. Intracellular transport is a fast mechanism required in different processes within cells. We show that dynamic holographic optical tweezers are desirable to block these driven cargos to mechanically interact with the associated motor proteins.

JTuB34
Multi-Beam Laser Manipulator Based on Diffraction Grating, Kirill Afanasiev, Alexander Korobtsov, Svetlana Kotova, Nikolay Losevsky, Evgeny Vorontsov; P.N. Lebedev Physical Inst., Russian Federation. A simple technique for the formation of an array of laser traps on the basis of phase diffraction gratings is proposed. The array allows trapping transparent elongated micro objects at several points simultaneously and deforming them.

JTuB35
Volumetric Multiple Optical Traps Produced by Devil’s Lenses, Walter D. Furlan1, F. Giménez2, MH Giménez2, Juan A. Monsoriu1, 1Univ. de Valencia, Spain, 2Univ. Politécnica de Valencia, Spain. We propose the use of a novel diffractive optical element, coined devil’s lens as a multiple foci optical element to produce optical tweezers and vortices.

Posters JTuB1–JTuB7 can be found in the DH abstracts section. Posters JTuB8–JTuB16 can be found in the FTS abstracts section. Posters JTuB17–JTuB21 can be found in the HISE abstracts section. Posters JTuB22–JTuB29 can be found in the NTM abstracts section.
Key to Authors and Presiders
(Bold denotes Presider or Presenting Author)

A
Achilefu, Samuel—NTuB5
Ackerman, Andrew—HWB1
Ackerman, Steven A.—HWB1, HWC4
Ackermann, Jörg—HMC2
Ade, Peter A. R.—FTuC4
Adeyemi, Adekunle A.—DMAS
Adler, Douglas—JMA4
Afanasev, Kirill—JTuB34, OTuA5
Aguet, François—NMB3
Albella, Pablo—JTuB25
Aldenius, Maria—JTuB12
Alvarez-Palacio, Diana—DWB9
Aminou, Donny M.—FMC1
Anderson, James—HMA1, HMA4, HMC3
Andilla, Jordi—JTuB33
Arden-Jacob, Jutta—NMB2
Arezki, Brahim—FTuB4
Armand, Marie-Francoise—DWD5
Arroyo, Key—FWC5
Ash, William M.—DTuA4
Asundi, Anand—DTuB6, JTuA2
Awatsuji, Yasuhiro—JTuB2

B
Baasansuren, Ganbat—DWB31
Babcock, David D.—FTHA6, FWC3
Bachler, Brandon R.—NMC4
Backman, Vadim—NTuB6
Backsten, Jan—DWB13, DWC3
Badizadegan, Kamran—NTuA1, NTuA2
Balkov, Daniel—NTuB6
Ball, Naveen K.—NWB3
Banerjee, Partha P.—DMB1, DMB, DTuB3
Bao, Hong Chun—NWD3
Barada, Daisuke—DWD4
Baran, Anthony—HTuB2, HTuC
Barbastathis, George—DMB4, DTuA, DTuB5, DWB3, DWB4, JTuB5
Barnet, Christopher—HTuA, HTuC2, HWC5
Barrera, John F.—JTuB3
Barsi, Christopher—DMA4
Barthelemy, Alain—NWC6
Barton, Jennifer—JTuB5
Bartoo, Aaron C.—NWC3
Baum, Bryan A.—HMA, HMB4, HMB5, HWB3
Beeby, Ralph—HWC6
Behr, Bradford—FWC4
Ben-Jaffel, Lotfi—FWC5
Bench, Pierre—JTuB9
Bergtsson, Jörgen—DWB13, DWC3
Bergman, Thomas—FWD2
Berglund, Andrew J.—NWB5
Bergoend, Isabelle—DWB5
Bernard, F.—FBM5
Bernath, Peter—FWA1, FWA3, JMA
Betremieux, Yan—FWC3
Bi, Lei—HMB4
Bierhoff, Walter C. J.—NWC5
Bifano, Thomas G.—NMD3
Biteen, Julie S.—NMA5
Bjoraker, G. L.—FMA3
Blackie, Douglas—FWB3
Blackwell-Whitehead, Richard—FTuA3, FWB2, FWB3
Blake, Thomas A.—FWA6
Blanche, Pierre-Alexander—DWB36
Blatherwick, Ron—HMC5
Blavier, Jean-Francois—JMA3
Blumstein, Denis—FMC2
Boone, Chris—FWA3
Boonsue, Suporn—FMC3
Booth, Martin J.—NWA1
Borbas, Eva—HWA2
Borg, Lori—FMA4
Bornemann, Jorg—HMC4
Borovoi, Anatoli—HTuB4
Boss, Daniel—DTuA2
Botvinick, Elliot—OMA1
Bouma, Brett E.—NTuB4
Boussias, Alex—NWD1
Bouyer, Philippe—OTuC5
Bowman, Richard W.—OMC3
Bozinovic, Nenad—NWC3
Brachet, F.—FBM5
Brasunas, John C.—FMA3, FTuA1
Bras, A. L.—NWC5
Breham, Markus—FTuB2
Brevier, Julien—NWC6
Bristol, Paul—JTuB12
Brockett, Gillian—FWC4
Brzobohaty, Oto—OTuC3
Buffet, L.—FMC2
Buiks, Henry—FMA1
Buil, C.—FBM5, FMC2
Burnham, Daniel—OTuB3
Burton, Sarah D.—FWA6

C
Cagigal, Manuel P.—JTuB23
Calbet, Xavier—HMC4, HTuC3
Camy-Peyret, C.—FMC2
Canales, Vidal F.—JTuB23
Cansot, E.—FBM5
Carberry, David M.—OMA5
Carl, Daniel—DWD6
Carlson, Ronald C.—FMA3, FTuA5
Carreiles, Ramon—NMD4
Case, Jason—OTuA1
Casteras, C.—FBM5
Cauwenberghs, Gert—NWA6
Cenko, Andrew—FWC4
Chamberland, Martin—FTHA2, FTHA3, JTuB14
Chan, Robert K. Y.—FWB4
Chandler, Eric V.—NMD4
Chang, Chi-Ching—DWB35
Chang, Yuan-Shuo—JTuB29
Charron, Luc G.—OMA4
Chatfield, Robert—HMC5
Chen, Chiung-Liang—DWB29
Chen, Gang—DWB23
Chen, George C. K.—JTuA4
Chen, Jocelyn S. Y.—OMA6
Chen, Nanguang—NWA5
Chen, Xin-Chang—JTuB29
Cheng, Chau-Jern—DTuB2
Cheng, Zhaozhu—HWC5
Chestukhin, Anton—NTuB5
Cheung, Wai Keung—DWC2
Chi, Yu M.—NWA6
Chia, Thomas H.—NMD2
Chiang, Chung-Sheng—DWB35
Chiang, Jen-Shiu—DTuB2
Chiou, Linda—FWA3
Chiu, Daniel—OMA2
Chiu, Jui-Yuan C.—HTuC5
Chmyrov, Andriy—NMB2
Choi, Wonshik—NTuA1, NTuA2, NTuB
Chong, Shau Poh—NWA5
Chou, Jin-Wen—DTuB2
Christensen, Todd C.—NWC7
Chu, Kengyeh K.—NMD3, NWA4, NWC3
Chumbley, Scott—DMC3
Chylek, Petr—HTuC1
Čížmár, Tomáš—OTuC3, OTuA4
Coddington, Ian R.—FBM1, FTuB
Colomb, Tristan—DTuA3, DWB5
Connor, Brian—JMA3
Contag, Christopher H.—NWC1, NWC2
Corliss, Jason—FWC5
Couillard, Benjamin—JTuB14
Courau, E.—FBM5
Cox, Caroline V.—FMC4
Washenfelder, Rebecca—JMA3
Wei, Ming—JTuB20
Wei, Ruyi—FTuB5
Weisz, Elisabeth—HWA2, JTuB17
Wen, Qing—FWD3
Weng, Fuzhong—HWD1
Weng, Jiawen—DWB16
Wennberg, Paul—JMA3
Westphal, Volker—NMA1, NMB
Wicker, Kai—NWB1
Widengren, Jerker—NMB2
Williams, Gavin L.—DWB28
Wills, Jonathan—OTuB1
Wilson, Tony—NWA1
Wind, Galina—HWB1
Wiscombe, Warren—HTuC5
Wishnow, Ed—FTuA4
Wong, Chee Howe—NWA5
Wright, Jason T.—FTuA4
Wu, Jing—OMC4
Wu, Lei—FWD4, NTuB3, NWD1
Wu, Ming C.—JMB1
Wu, Qionghui—FTuB5
Wu, Zhongfu—JTuB31
Wunch, Debra—JMA3

X
Xie, Huikai—FWD4, NTuB3, NWD1
Xie, Jinghui—JMB5
Xiong, Xiaoqian—HTuC2
Xiong, Yi—NMA6
Xu, Chris—NMC, NMD1
Xu, Shuhong—DWB32
Xu, Xuewu—DWB32

Y
Yamaguchi, Ichiro—DMA1
Yamaguchi, Takeshi—DWC4
Yamamoto, Kenji—DWA5
Yamashita, Satoshi—DWB10
Yamashita, Yutaka—NTuA4
Yamauchi, Toyo-iko—NTuA4
Yang, Bor-Wen—JTuB29, JTuB30
Yang, Jun—JTuB31, OTuC2
Yang, Ping—HMB4, HMB5, HTuB, HWB3
Yaraş, Fahri—DTuB7, DWA4
Yasuda, Akiko—FTuC1
Yatagai, Toyo-iko—DWC1, DWD4
Ye, Yupeng—NTuB5
Yew, Elijah Y. S.—NBW3
Yoon, Seon Kyu—DWB24
Yoshikawa, Hiroshi—DTuB7, DWC4, JTuA
Yoshimori, Kyu—DWB34
Young, D. F.—HTuA1
Yu, Yingjie—DWB22, DWB23
Yuan, Li-bo—JTuB31, OTuC2

Z
Zaccarin, André—FThA5, JTuB13
Zemánek, Pavel—OTuA4, OTuC3
Zhan, Ya-ting—JTuB20
Zhang, Haihua—DWB7
Zhang, Jin—FTuC4
Zhang, Likun—OMB5
Zhang, Song—DMC3
Zhang, Xin—DMA3
Zhang, Xiang—NMA6
Zhang, Yu—JTuB31, OTuC2
Zhao, Mingtao—NTuA3
Zheng, Hua-dong—DWB22
Zheng, Wei—NMC5
Zhong, Jingang—DWB16
Zhou, D. K.—HTuA1
Zhou, Daniel K.—HWD3
Zhou, Jinsong—FTuB5
Zhou, Lihang—HTuA2, HWC3, HWD2
Zhou, Wenjing—DWB22, DWB23
Ziemons, Karl—JTuB10
Zilles, Alexander—NMB2
Zinner, Tobias—HWB1
Advances in Imaging
OSA Optics & Photonics Congress and Tabletop Exhibit 2009
UPDATE SHEET

Withdrawals:
NMC6 JTuB34
FTuA4 JTuB35
OTuA5 HTuC6
JTuB23 DWA3
JTuB29 DWB2
JTuB30 HWD4

Substituted Papers:
The paper HTuC6 that is in your program will not be presented. During this time slot, the following postdeadline paper will be presented in its place: PHTuC6, Airborne Radiometer Measurements of Above Cloud Reflectance in the Presence and Absence of Aerosols, Odele Coddington1, Peter Pilewskie1, Tomislava Vukicevic1, John Livingston2, Steve Platnick1, Gala Wind1, Jens Redemann1, Philip B. Russell1; 1Univ. of Colorado at Boulder, USA, 2SRI Intl., USA.

The poster JTuB17 will be presented during the session HWA•Hyperspectral IR and Imager Data Analyses (April 29, 2009, 8:30 a.m.–10:30 a.m., Junior Ballroom C) as oral presentation HWA5.

Presider Updates:
Nickolai V. Kukhtarev; Alabama A&M Univ., USA, will preside over session DMB•Novel Technologies in Holography, on Monday, April 27, 2009, 11:00 a.m.–1:00 p.m. in Grand Ballroom A.

Yoshio Hayasaki; Utsunomiya Univ., Japan, will preside over session DWC•Computer-Generated Holograms, on Wednesday, April 29, 2009, 2:00 p.m.–4:00 p.m. in Grand Ballroom A.

Presenter Changes:
DTuA1, Harmonic Holography will now be presented by Chia-Lung Hsieh1,2, 1Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2Caltech, USA.

NTuA5, Linear Phase-Gradient Imaging with Asymmetric Illumination Based Differential Phase Contrast (AIDPC), will now be presented by Colin J. R. Sheppard, Natl. Univ. of Singapore, Singapore.

Time Changes:
HWA will end a half hour later at 10:30 a.m.
Exhibits will end at 12:30 p.m. on Wednesday, April 29, 2009.

Postdeadline Paper Programs:
Post deadline Paper Programs are available at Registration.

Special Events:
Meet the Applied Optics Editors Dinner on Tuesday, April 28, 2009, 7:00 p.m. All conference attendees, especially students, are invited to this casual networking dinner. More information is available at Registration.
POSTDEADLINE PAPERS

ADVANCES IN IMAGING

- Digital Holography and Three-Dimensional Imaging (DH)
- Fourier Transform Spectroscopy (FTS)
- Hyperspectral Imaging and Sensing of the Environment (HISE)
- Novel Techniques in Microscopy (NTM)
- Optical Trapping Applications (OTA)

April 26-30, 2009
Sheraton Vancouver Wall Centre Hotel
VANCOUVER, BRITISH COLUMBIA, CANADA

ISBN: 978-1-55752-872-8
Tuesday, April 28, 2009

Junior Ballroom C
2:00 p.m.–4:00 p.m.

HTuC • New Remote Sensing Perspectives
Anthony Baran; Met Office, UK, Presider

PHTuC6 • 3:45 p.m.
Airborne Radiometer Measurements of above Cloud Reflectance in the Presence and Absence of Aerosols, Odele Coddington1, Peter Pilewskie1, Tomislav Vukicevic1, John Livingston2, Steve Platnick3, Gala Wind4, Jens Redemann4, Philip B. Russell5; 1Univ. of Colorado at Boulder, USA, 2SRI Intl., USA, 3NASA GSFC, USA, 4NASA AMES, USA. We present cloud retrieval results from SSFR measurements made in the presence and absence of aerosols and show comparisons to MODIS. A method for treating aerosol bias in retrievals as systematic model uncertainty is described.

Grand Ballroom C/D
4:30 p.m.–6:00 p.m.

JTuB • DH/FTS/HISE/NTM/OTA Joint Poster Session

PJTuB36
Automated Particle Characterization Using Holographic Video Microscopy, Fook Chiong Cheong, David G. Grier; New York Univ., USA. With an efficient particle identification algorithm, combine with hardware acceleration and software optimization, holographic microscopy data can be analysis in near real time with sufficient accuracy to enable unattended holographic tracking and particle characterization.

PJTuB37
Incoherent Optical Imaging Using Synthetic Aperture with Fresnel Elements, Barak Katz, Joseph Rosen; Ben-Gurion Univ. of the Negev, Israel. We present a new lensless incoherent holographic system operating in a synthetic aperture mode. Spatial resolution exceeding the Rayleigh limit is obtained by tiling several holographic elements into a complete Fresnel hologram of observed objects.

PJTuB38
CrIS Radiance Spectra Modeling and End-to-End Error Analysis, Nikita Pougatchev, Gregory Cantwell, Gail Bingham; Space Dynamics Lab, Utah State Univ., USA. We present the Cross-track Infrared Sounder (CrIS) end-to-end error model consisting of instrument model and Validation Assessment Model. Models' descriptions along with examples of application are presented.

PJTuB39
SPDM - Single Molecule Superresolution of Receptor Clusters in E. coli Bacteria, Thomas Ruckelshausen1, Paul Lemmer1, Victor Sourjik2, Christoph Cremer1,3,4; 1Kirchhoff-Inst. for Physics, Univ. of Heidelberg, Germany, 2Ctr. for Molecular Biologie Heidelberg, Univ. of Heidelberg, Germany, 3Inst. for Pharmacy and Molecular Biotechnology, Univ. of Heidelberg, Germany, 4Inst. for Molecular Biophysics, The Jackson Lab, USA. In E. coli bacteria the chemotaxis phosphatase protein CheZ was labeled with YFP (yellow fluorescent protein). Their reversible photobleaching is used for an optical isolation in time. An average localization precision of 22nm was achieved.
Wednesday, April 29, 2009

Junior Ballroom C
8:30 a.m.–10:30 a.m.

HWA • Hyperspectral IR and Imager Data Analyses
Allen Huang; Univ. of Wisconsin at Madison, USA, Presider

PHWA6 • 10:15 a.m.
Investigations of Cirrus in the Far Infrared with the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS), Caroline Cox1, Neil Humpage1, Paul Green1, Juliet Pickering1, John Harries1, Jonathan Taylor2, Anthony Baran2, Alan Last1, Jon Murray1; 1Imperial College London, UK, 2Met Office, UK. An overview of the results of recent field campaigns performed with the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) to study the radiative properties of cirrus in the far infrared spectral region is presented.

Grand Ballroom C/D
11:00 a.m.–12:30 p.m.

DWB • DH Poster Session

PDWB37

PDWB38
A High-Definition Full-Parallax CGH Created by the Polygon-Based Method, Kyoji Matsushima, Sumio Nakahara; Kansai Univ., Japan. A large-scaled full-parallax CGH with 4 billion pixels is produced by a polygon-based method. The CGH reconstructs a fine 3-D image and gives a large sensation of depth owing to the silhouette-masking technique.
Key to Authors and Presiders

(Bold denotes Presider or Presenting Author)

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balciunas, Tadas— PDWB37</td>
<td>Cantwell, Gregory— PJTuB38</td>
<td>Matsushima, Kyoji— PDWB38</td>
</tr>
<tr>
<td>Baran, Anthony— HTuC, PHWA6</td>
<td>Cheong, Fook Chiong— PJTuB36</td>
<td>Melninkaitis, Andrius— PDWB37</td>
</tr>
<tr>
<td>Bingham, Gail— PJTuB38</td>
<td>Coddington, Odele— PHTuC6</td>
<td>Murray, Jon— PHWA6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakahara, Sumio— PDWB38</td>
<td>Pickering, Juliet— PHWA6</td>
</tr>
<tr>
<td></td>
<td>Pilewskie, Peter— PHTuC6</td>
</tr>
<tr>
<td></td>
<td>Platnick, Steve— PHTuC6</td>
</tr>
<tr>
<td></td>
<td>Pougatchev, Nikita— PJTuB38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redemann, Jens— PHTuC6</td>
<td>Sirutkaitis, Valdas— PDWB37</td>
</tr>
<tr>
<td>Rosen, Joseph— PJTuB37</td>
<td>Sourjik, Victor— PJTuB39</td>
</tr>
<tr>
<td>Ruckelshausen, Thomas— PJTuB39</td>
<td></td>
</tr>
<tr>
<td>Russell, Philip B.— PHTuC6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor, Jonathan— PHWA6</td>
<td>Vanagas, Andrius— PDWB37</td>
</tr>
<tr>
<td></td>
<td>Vukicevic, Tomislava— PHTuC6</td>
</tr>
<tr>
<td></td>
<td>Wind, Gala— PHTuC6</td>
</tr>
</tbody>
</table>
For more information about OSA Optics & Photonics Congresses, visit www.osa.org/congresses

The Optical Society
2010 Massachusetts Ave., NW
Washington, DC 20036 USA