Advanced Solid-State Photonics

Topical Meeting and Tabletop Exhibit

January 28-31, 2007

Fairmont Hotel Vancouver
Vancouver, Canada

PDP Submission Deadline: January 4, 2007, 12:00 p.m. noon EST (17.00 GMT)
Hotel Reservation Deadline: December 28, 2006
Pre-Registration Deadline: January 4, 2007
Program Committee

General Chair

Timothy J. Carrig, Lockheed Martin Coherent Technologies, USA

Program Chair

Jonathan D. Zuegel, Univ. of Rochester, USA

Committee Members

Gerard Aka, Ecole Natl. Superieure de Chimie de Paris, France
Tasoltan Basiev, General Physics Inst., Russia
Craig Denman, AFRL, USA
Christopher Ebbers, LLNL, USA
Jason Eichenholz, Newport, Inc., USA, SEC Representative*
Ingmar Hartl, IMRA America, Inc., USA
Guenther Huber, Univ. Hamburg, Germany
Jens Limpert, Friedrich-Schiler Univ., Germany
Rüdiger Paschotta, RP Photonics Consulting GmbH, Switzerland
Robert R. Rice, Northrop Grumman, USA
Irina Sorokina, Vienna Univ. of Technology, Austria
David Sumida, HRL, USA
Stefano Taccheo, Politecnico di Milano, Italy
Takunori Taira, Inst. for Molecular Science, Japan
Anne Christine Tropper, Univ. of Southampton, UK
Kurt Weingarten, Time-Bandwidth Products, Switzerland
Jirong Yu, NASA Langley Res. Ctr., USA
Jianqiang Zhu, Shanghai Inst. of Optics and Fine Mechanics, China

*Representative to OSA's Science and Engineering Council
About ASSP

Advances in solid-state lasers, parametric devices and nonlinear frequency conversion provide powerful tools for an increasingly broad range of applications including spectroscopy, metrology, remote sensing, communications, material processing, medicine and entertainment.

Now in its 22nd year, the Advanced Solid-State Photonics Topical Meeting remains the world's premier forum for discussing new developments in laser and nonlinear optical materials and devices. The upcoming meeting, in Vancouver, British Columbia, will provide a spectacular setting for learning about these advances. Take this opportunity to be part of the year's most significant meeting on advanced solid-state laser sources. Plan to attend Advanced Solid-State Photonics 2007!

Meeting Topics to Be Considered

- Tunable and New Wavelength Solid-State Lasers
- Diode-Pumped Lasers
- Fiber Lasers
- Photonic-Crystal Lasers
- High-Power Lasers
- Short-Pulse Lasers
- Frequency-Stable Lasers
- Microlasers
- Optically-Pumped Semiconductor Lasers
- High Brightness Diodes
- Optical Sources Based on Nonlinear Frequency Conversion
- Frequency Conversion Techniques, Including OPO, OPA, OPG, SHG, SFG, DFG and Raman
- Developments in Laser Media
- Developments in Nonlinear Optical Materials
- Developments in Engineered Optical Materials
- Laser Sources and Their Applications in Science, Medicine, Remote Sensing, Industry or Entertainment
Invited Speakers

Banquet Speaker

Forensic Lasers Use in CSI: Crime Scene Investigation, Richard Catalani; CSI Productions, USA

ASSP Invited Speakers:

MA1, High-Power Thin-Disk Lasers, Adolf Giesen; Univ. of Stuttgart, Germany.

MC1, High-Power Cryogenically Cooled Yb:YAG Lasers, Daniel J. Ripin; MIT Lincoln Lab, USA.

TuA1, Precision Timing, Measurements and Optical Clocks Using Solid State Lasers, Leo Hollberg; NIST, USA.

TuC1, Periodically Poled Nonlinear Materials - Engineered for Applications and away from Damage, Fredrik Laurell, Carlota Canalias, Junji Hirohshi, Shunhua Wang, Valdas Pasiskevicius; Royal Inst. of Technology, Sweden.

WA1, Octave Spanning Ti:Sapphire Lasers, Franz X. Kaertner, A. Benedick, R. Ell, O. D. Mücke, J. Birge, M. Sander; MIT, USA.

WD1, Recent Progress and the Future of Ceramic Lasers, Ken-ichi Ueda; Univ. of Electro-Communications, Japan.
Special Events

Short Courses

Short courses are a wonderful way to enhance your knowledge of the optical field. ASSP selects experts in their fields to provide you with an in-depth look at intriguing topics. The courses are designed to increase your knowledge of a specific subject while offering you the experience of knowledgeable teachers. An added benefit of the courses is the availability of continuing education units (CEUs).

CEUs are awarded to each participant who successfully completes the short course. The CEU is a nationally recognized unit of measure for continuing education and training programs that meet established criteria. To earn CEUs, a participant must complete the CEU credit form and course evaluation and return it to the course instructor at the end of the course. CEUs will be calculated and certificates will be mailed to participants.

- Tuition for the short course is a separate fee, and advance registration is recommended: the number of seats in the course is limited.
- The short course will sell out quickly! There will be no waiting list for the short course.
- Short course materials are not available for purchase.

Schedule

Sunday, January 28, 2007

SC276, Ultrafast Fiber Amplifiers, Martin Fermann; IMRA America, Inc, USA.
SC275, Solid-State Slab Lasers, Hagop Injeyan, Richard Moyer; Northrop Grumman Corp, USA.

Tuesday, January 30, 2007

Sunday, January 28, 2007
1:00 p.m. –5:00p.m.

SC276, Ultrafast Fiber Amplifiers, Martin Fermann; IMRA America, Inc, USA.

Course Level:
Advanced Beginner (basic understanding of topic is necessary to follow course material)

Intended Audience:
This course is intended for researchers, engineers and graduate students who are interested in a comprehensive review of current high power pulsed fiber laser
technology. It will not only be a 'how to' instruction but will also address the 'why' for those who want to build their own fiber laser systems.

Course Objectives:

- Design optical systems for fiber amplifier pumping
- Build pico- and femtosecond fiber oscillator systems
- Build high peak and high average power fiber amplifier systems
- Design and model pulsed fiber oscillators and amplifiers
- Test the performance characteristics of fiber pulse sources
- Build fiber supercontinuum sources and fiber frequency combs

Course Description:
The attendee will be introduced to the unique capabilities of fiber amplifiers in the construction of high average power and high peak power laser systems. Short pulse fiber systems operating with wall plug efficiencies of 30% at average powers in the kW range can be constructed in conjunction with high brightness diode pump sources, whereas peak powers in excess of several MW can be reached in large mode fibers. In conjunction with chirped pulsed or parametric amplification schemes peak powers in excess of 1 GW are reachable.

This course gives an overview of short pulse generation techniques in fiber amplifiers; all relevant aspects of high power fiber laser technology will be addressed, comprising diode pump sources, diode to fiber coupling techniques, seed sources and pulse generation in fiber oscillators, fiber amplifier material and spectroscopic properties, linear and nonlinear fiber amplification processes as well as thermal limitations and damage mechanisms. The emphasis will be on industrially relevant laser systems as used in instrumentation and optical processing. Numerous design examples will be given, illustrating the recurring physical phenomena governing these systems.

The attendee will be introduced to the latest developments in ultra-large mode fiber and doped fiber technology. The properties of solid core, higher-order mode, micro-structure, photonic crystal fibers and fiber rods will be compared. The attendee will be introduced to the physical limits of such ultra large mode fibers in the construction of high peak power and high average power fiber amplifiers and how to optimally approach these limits in actual system design.

The attendee will further learn how to construct all-fiber pico-second and femto-second pulse sources and how to generate canonical pulse forms, such as, solitons, gaussians, similaritons and cubicons. The relevance of these canonical pulse forms in high peak power amplification systems based on chirped pulse amplification in fiber amplifiers and nonlinear crystals will be elucidated and preferred options for pulse stretching and re-compression will also be addressed.

The course will conclude with a brief review of hot topics in fiber technology, comprising supercontinuum generation, THz generation, frequency combs and absolute phase control.

Biography:
Martin E. Fermann is Director of Laser Research with IMRA America Inc. He has been involved in fiber and ultrafast laser research for more than 20 years. He has pioneered ultrafast fiber laser technology and has been a major force in the commercialization of ultrafast fiber laser systems. He has contributed to 250 peer-reviewed publications, has
edited a book on ultrafast lasers and is the holder of 31 US patents. Currently he is serving as guest editor for a JOSA B special edition on ‘fiber lasers’ to be published by the Optical Society of America.

SC277, Raman Laser Materials and Applications, Tasoltan T. Basiev, Sr.; General Physics Inst. RAS, Russian Federation.

Course Level:
I do not want to select a level for my course.

Intended Audience:
Scientists, engineers, and students of Universities and RD staff in the industry, who use and develop laser and nonlinear crystals for laser frequency shifting, wavelength multiplication, pulse shortening, fast-switched optical amplification, and coherent light sources at new wavelengths (Raman shifters, Raman lasers, self-Raman lasers). General background in optics and lasers is required.

Course Objectives:
- Compare different Raman laser crystals in terms of the threshold and gain values, Raman frequency shifts, and line broadening
- Determine the best regime of operation for specific Raman crystals
- Specify materials and constructions for Raman lasing and frequency shifting at specific wavelengths and duration of pumping
- Design low-threshold highly efficient Raman lasers and frequency shifters for picosecond to CW modes of operation
- Develop diode-pumped self-Raman lasers with strong pulse shortening and peak power increasing

Course Description:
This course is focused on the search and development of new nonlinear crystals for Raman shifters and lasers. It will be shown how the Raman Gain Spectroscopy, Coherent Anti-Stokes Raman Scattering, and spontaneous Raman Scattering techniques can be used to evaluate the effect of line broadening, vibrational relaxation, temperature, and crystal structure on the Raman gain and scattering cross section in various crystals. The comparative analysis of many tens of different Raman-active crystals with different quasi-molecular anion groups (NO₃, NbO₃, WO₄, MoO₄, and VO₄) will be presented. Selection of the most promising crystals with the maximum Raman gain and scattering cross sections and their testing under nano- and picosecond pumping at different wavelengths will be outlined. The newly developed BaWO₄, SrWO₄, PbWO₄, BaMoO₄, SrMoO₄, PbMoO₄, YVO₄, GdVO₄ crystals with unique (both for steady-state and transient regimes) Raman characteristics used to design low-threshold highly efficient Raman frequency shifters and lasers will be described in detail (in particular, the high-gain BaWO₄ crystal provides efficient multistage Raman shifting to new wavelengths in the mid IR, up to 3.69 µm). Self-Raman-laser operation in LD-pumped Nd:GdVO₄, Nd:PbMoO₄ and Nd:SrMoO₄ laser-Raman crystals with the high energy conversion efficiency (>60%) and strong Raman laser pulse shortening (below 400 ps) will be reported.

It will be shown that solid state Raman lasers ensure a low divergence of the output laser radiation (one transverse mode), many watts of average power, high conversion efficiency (up to 50% at the external pumping and 90% at the intracavity pumping), effective shortening of nano- and picosecond pulses, and radiation tuning in an
extremely wide frequency range. Eye-Safe and Sodium-Star laser projects will be touched as an example of application.

Biography:
Tasoltan T. Basiev is a Scientific Deputy Director and a Division Head at Laser Materials and Technology Research Center of GPI, Moscow, Russia. Received master degree in electrical engineering at the Moscow Power Engineering Institute in 1972, Ph.D. and doctoral degree in physics in 1977 and 1983 at Lebedev Physical Institute RAS. He has an over 30-year experience in photonic materials and solid state lasers (research and developments). He is the author of 3 books, 27 patents, 33 book chapters and review articles, and more than 300 scientific publications. T. Basiev is an OSA Fellow, elected member of Russian Academy of Engineering Sciences. He supervised 16 Ph.D recipients.

SC275, Solid-State Slab Lasers, Hagop Injeyan, Richard Moyer; Northrop Grumman Corp, USA.

Course Level:
Beginner (no background or minimal training is necessary to understand course material)

Intended Audience:
Students, engineers, scientists and non-degreed professionals who have a basic knowledge of lasers and would like to learn about the unique aspects of slab lasers and how they are used to scale the power of solid state lasers.

Course Objectives:
- Describe the top level characteristics of solid state lasers, issues that are unique to solid state lasers and common geometries of gain media including rods and slabs
- Identify the advantages of slabs over rods including advantages in optical path differences (OPD) and stress induced birefringence. You will also learn about the power scaling laws for each geometry
- Discuss the characteristics of various pumping geometries of slabs including side-pumping, edge-pumping and end-pumping, and how to determine optimal doping level for each geometry
- Describe various thermal management approaches and methods for controlling the OPD under steady state and heat capacity modes of operation
- Estimate power extraction from slab amplifiers using the modified Frantz-Nodvik equation for zig-zag propagation through slabs and how to use different eigenangles to multipass a slab
- Compare how different groups across the industry are trying to scale power to 100 kW and beyond

Course Description:
This course will provide the student with an overview of solid state lasers, the issues associated with power scaling solid state lasers, and the characteristics of slab lasers that overcome or moderate these issues. Discussions will include scaling laws for slab geometry lasers and a comparison with rods. The course will present a historical perspective of how slab lasers have evolved over the last 20 years focusing on the design features of various embodiments of slab lasers and the different techniques for
pumping, cooling and extracting from slabs. The course will conclude with a comparison of how different groups across the industry are racing to scale power to 100 kW and beyond.

Biography:
Dr. Injeyan and Dr. Moyer, graduates of UCLA and Caltech respectively, have a combined experience of over 60 yrs in laser development and related technologies. During the last 15 years, their work at Northrop Grumman Space Technology (formerly TRW) has focused on architectures using slab lasers, where they have contributed to scaling solid state laser powers to record levels. They have also collaborated in developing two laser courses that have been used to provide solid state laser training to over 200 staff members at Northrop Grumman during the last two years.

Tuesday, January 30, 2007
7:00 p.m. – 10:00 p.m.
Pacific Ballroom

Conference Banquet
Join your colleagues for the conference banquet, featuring a presentation by Richard Catalani, “CSI Productions on Forensic Lasers Use in CSI: Crime Scene Investigation.” All technical registrants receive a ticket with registration. Guest tickets may be purchased for US$ 75 and must be purchased by 12:00 p.m. on Monday, January 29.

Biography:
Richard Catalani graduated from California State University at Northridge with a Major in Biology and Minor in Chemistry. Catalani received a certificate from the State of California as a Medical Toxicologist Technologist and in 1985, started working with the Los Angeles County Sheriff’s Crime Lab in the Toxicology, Narcotics and Firearms Identification Sections. In 1998, Catalani became the Supervising Criminalist in the Firearms Identification Section in 1998.

Retiring from the Los Angeles County Sheriff’s Department Crime Lab in 2001 after sixteen years of service, Catalani began working as an Independent Firearms Examiner. In 2002, Catalani became the technical advisor to the television show, *CSI- Crime Scene Investigation*. For two seasons, Catalani worked with the cast and crew advising them how to perform all of the forensic tasks written for the show. The next season, Catalani became a writer, contributing his experiences in forensics and police procedures to the stories. Richard Catalani currently serves as the Executive Story Editor for *CSI – Crime Scene Investigation*.
ASSP 2007 Postdeadline Papers

MF1 • 7:30 p.m.
First Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL), Benjamin Rudin, Deran J. H. C. Maas, Aude-Reine Bellancourt, Matthias Golling, Heiko J. Unold, Thomas Südmeyer, Ursula Keller; ETH Zurich, Switzerland. We demonstrate the first vertical-external-cavity surface-emitting semiconductor laser with an integrated saturable absorber for passive modelocking. The novel MIXSEL concept appears suitable for cost-effective high-volume wafer-scale fabrication of high-repetition-rate lasers for telecommunications or optical clocking.

MF2 • 7:42 p.m.
Efficient, High-Power, Tm-Doped Silica Fiber Laser, Evgueni Slobodtchikov¹, Peter F. Moulton¹, Gavin Frith²; ¹Q-Peak Inc., USA, ²Nufern, Inc., USA. We report on a Tm-doped silica fiber laser that generates 263 W of cw power with a launched pump conversion efficiency of 52% and a slope efficiency of 59%.

MF3 • 7:54 p.m.
104 W Highly Efficient Thulium Doped Germanate Glass Fiber Laser, Shibin Jiang¹, Jianfeng Wu¹, Zhidong Yao¹, Jie Zong¹, Norm P. Barnes²; ¹NP Photonics, USA, ²NASA Langley Res. Ctr., USA. 104 W 1.9 μm laser was demonstrated from a 40-cm-long dual-end pumped Tm-doped germanate glass fiber. The Slope efficiency of 68% was achieved from 20-cm-long one-end pumped fiber with an output power of 64 W.

MF4 • 8:06 p.m.
Quasi-Phase-Matching Structures Induced by Ferroelastic Domains in RbTiOAsO₄ Crystals, Sooseok Lee¹, Min Ho Rim¹, Yusin Yang¹, Ae Ran Lim², Se-Young Jeong³, Choon Sup Yoon¹; ¹KAIST, Republic of Korea, ²Jeonju Univ., Republic of Korea, ³Busan Natl. Univ., Republic of Korea. We report for the first time quasi-phase-matching (QPM) structures induced by ferroelastic domains in RbTiOAsO₄ crystals, which overcome the current limit of ~3 μm period and ~3 mm thickness in electrically poled QPM structures.

MF5 • 8:18 p.m.
Resonantly Diode-Pumped Er:YAG Cryo-Laser at 1618 nm, Mark Dubinskii, Nikolay Ter-Gabrielyan, George A. Newburgh, Larry D. Merkle; US ARL, USA. Efficient resonantly diode-pumped Er:YAG cryo-laser is demonstrated for the first time. Slope efficiency of 71.5% per absorbed power was achieved at 78°K in these initial experiments. Maximum quasi-CW power of over 63W is reported.

MF6 • 8:30 p.m.
Validation of Rotary Disk Laser Concept in Producing Efficient, High-Power, Diffraction-Limited Laser Sources in the Visible and the Infrared, Santanu Basu; Sparkle Optics Corp., USA. The premise that a rotary disk laser can efficiently generate high power across the spectrum was validated by a 256-W cw laser and a 214-W Q-switched laser at 1030-nm and an 87-W laser at 515-nm.

MF7 • 8:42 p.m.
Real-Time Terahertz Imaging System for the Detection of Concealed Objects, Daniel Creeden, John C. McCarthy, Peter A. Ketteridge, Timothy Southward, James J. Komiak, Evan P. Chicklis; BAE Systems, USA. We have demonstrated for the first time
a novel, real-time terahertz imaging system using a single fiber laser to generate THz radiation by DFM and an uncooled microbolometer array to image the THz signal.

Current Exhibitor List

(as of January 23, 2007)

- Cleveland Crystals
- Coherent Inc.
- Crystal Fibre A/S
- Del Mar Photonics
- DILAS Diodenlaser GmbH
- EKSPLA
- ELS Electronic Laser System
- Koheras A/S
- Laser Focus World
- Leading Edge Optical
- LINOS Photonics
- Multiwave Photonics
- Newport Corporation
- Northrop Grumman Cutting Edge Optronics
- Northrop Grumman Corp. – SYNOPTICS
- NUFERN
- Nuvonyx Inc.
- Onyx Optics, Inc.
OptiGrate
Oxide Corporation
Photonics Spectra
Quintessence Photonics Corporation
RPMC Lasers, Inc.
Scientific Materials Corp.
Sparkle Optics Corporation
VLOC
Agenda of Sessions

Sunday, January 28, 2007

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00p.m. – 6:00p.m.</td>
<td>Registration</td>
<td>British Columbia Ballroom</td>
</tr>
<tr>
<td>1:00p.m. – 5:00p.m.</td>
<td>SC275: Solid-State Slab Lasers</td>
<td>Foyer</td>
</tr>
<tr>
<td>1:00p.m. – 5:00p.m.</td>
<td>SC276: Ultrafast Fiber Amplifiers</td>
<td></td>
</tr>
<tr>
<td>1:00p.m. – 5:00p.m.</td>
<td>SC277: Raman Laser Materials and Applications</td>
<td></td>
</tr>
</tbody>
</table>

Monday, January 29, 2007

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00a.m. – 5:00p.m.</td>
<td>Registration</td>
<td>British Columbia Ballroom</td>
</tr>
<tr>
<td>8:00a.m. – 8:15a.m.</td>
<td>Opening Remarks</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>8:15a.m. – 10:00a.m.</td>
<td>MA: High Power Solid-State Lasers I</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>10:00a.m. – 4:00p.m.</td>
<td>Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>10:00a.m. – 11:00a.m.</td>
<td>MB: Poster Session I, Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>11:00a.m. – 12:30p.m.</td>
<td>MC: High Efficiency Yb Lasers</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>12:30p.m. – 2:00p.m.</td>
<td>Lunch (on your own)</td>
<td></td>
</tr>
<tr>
<td>2:00p.m. – 3:30p.m.</td>
<td>MD: VIS/UV Sources</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>3:30p.m. – 4:00p.m.</td>
<td>Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>4:00p.m. – 5:30p.m.</td>
<td>ME: Fiber Lasers</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>5:30p.m. – 7:30p.m.</td>
<td>Dinner (on your own)</td>
<td></td>
</tr>
<tr>
<td>7:30p.m. – 9:00p.m.</td>
<td>MF: Postdeadline Paper Session</td>
<td>British Ballroom</td>
</tr>
</tbody>
</table>

Tuesday, January 30, 2007

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30a.m. – 12:30p.m.</td>
<td>Registration</td>
<td>British Columbia Ballroom</td>
</tr>
<tr>
<td>8:00a.m. – 10:00a.m.</td>
<td>TuA: Applications</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>10:00a.m. – 1:00p.m.</td>
<td>Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>10:00a.m. – 11:00a.m.</td>
<td>TuB: Poster Session II – Student Posters; Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>11:00a.m. – 1:00p.m.</td>
<td>TuC: Nonlinear Optics</td>
<td>British Ballroom</td>
</tr>
</tbody>
</table>

Wednesday, January 31, 2007

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30a.m. – 5:00p.m.</td>
<td>Registration</td>
<td>British Columbia Ballroom</td>
</tr>
<tr>
<td>8:00a.m. – 10:00a.m.</td>
<td>WA: Ultrafast Lasers</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>10:00a.m. – 4:00p.m.</td>
<td>Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>10:00a.m. – 11:00a.m.</td>
<td>WB: Poster Session III, Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>11:00a.m. – 12:30p.m.</td>
<td>WC: Novel Technologies</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>12:30p.m. – 2:00p.m.</td>
<td>Lunch (on your own)</td>
<td></td>
</tr>
<tr>
<td>2:00p.m. – 3:30p.m.</td>
<td>WD: High Power Solid-State Lasers II</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>3:30p.m. – 4:00p.m.</td>
<td>Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
</tbody>
</table>
4:00 p.m. – 6:00 p.m.
WE: Mid-IR Sources
Closing Remarks and Presentation of Best Student Paper Prizes
British Ballroom

6:00 p.m. – 6:30 p.m.
Welcome to Vancouver and to the Advanced Solid-State Photonics Topical Meeting and Tabletop Exhibit! We consider this meeting to be the world’s premier forum for discussion of new research in lasers and nonlinear optical materials and devices. These advances continue to enable an increasingly broad range of applications in fields as diverse as spectroscopy, metrology, remote sensing, communications, material processing, inertial confinement fusion, atomic physics, forensics, medicine and entertainment. We thank you for joining us!

As you can see from this year’s program, this event brings together a diverse, multinational group sharing a common interest in the development and use of solid-state photonics. This year you will be exposed to over 130 presentations of the highest caliber. We have scheduled seven invited and 55 contributed oral presentations, and over 70 poster presentations for you to attend over the next three days. Invited speakers will review the latest research in novel gain and parametric materials, such as ceramics and periodically-poled materials, discuss developments in unconventional coherent sources, such as single-frequency fiber lasers and octave-spanning lasers, and highlight applications such as the use of solid-state lasers in optical clocks. In addition, our banquet speaker will provide insight into how lasers are used in forensics and how Hollywood, in particular, views lasers. This year’s meeting also provides three new short courses and the opportunity to learn first-hand from leaders in ultrafast fiber amplifiers, Raman laser materials, and solid-state slab lasers. The program is exceptional!

This year we have added a special poster session for students to be held Tuesday morning. For the first time, the best paper in that session will be awarded a Best Student Poster Award. This will complement the Best Student Paper Award that we have traditionally given out to our best oral presentation.

Lastly, a highlight of all ASSP meetings is the chance to network with colleagues from across the globe. We have tried to structure this year’s conference to provide ample opportunities for such activities. Please be sure to introduce yourself to us and tell us about your research.

We hope that you enjoy your time with us this week and this unique opportunity to explore Vancouver, considered by some to be the “Best City in the Americas!”

Sincerely,

Timothy J. Carrig, Lockheed Martin Coherent Technologies, USA
General Chair

Jonathan D. Zuegel, Univ. of Rochester, Lab for Laser Energetics, USA
Program Chair
Program Committee

General Chair

Timothy J. Carrig, Lockheed Martin Coherent Technologies, USA

Program Chair

Jonathan D. Zuegel, Univ. of Rochester, Lab for Laser Energetics, USA

Committee Members

Gerard Aka, Ecole Natl. Superieure de Chimie de Paris, France
Tasoltan Basiev, General Physics Inst., Russia
Craig Denman, AFRL, USA
Christopher Ebbers, LLNL, USA
Jason Eichenholz, Newport, Inc., USA, SEC Representative*
Ingmar Hartl, IMRA America, Inc., USA
Günter Huber, Univ. Hamburg, Germany
Jens Limpert, Friedrich-Schiller Univ., Germany
Rüdiger Paschotta, RP Photonics Consulting GmbH, Switzerland
Robert R. Rice, Northrop Grumman, USA
Irina Sorokina, Vienna Univ. of Technology, Austria
David Sumida, HRL, USA
Stefano Taccheo, Politecnico di Milano, Italy
Takunori Taira, Inst. for Molecular Science, Japan
Anne Christine Tropper, Univ. of Southampton, UK
Kurt Weingarten, Time-Bandwidth Products, Switzerland
Jirong Yu, NASA Langley Res. Ctr., USA
Jianqiang Zhu, Shanghai Inst. of Optics and Fine Mechanics, China

*Representative to OSA’s Science and Engineering Council
Agenda of Sessions

Sunday, January 28, 2007

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 p.m. – 6:00 p.m.</td>
<td>Registration</td>
<td>British Columbia Ballroom Foyer</td>
</tr>
<tr>
<td>1:00 p.m. – 5:00 p.m.</td>
<td>SC275: Solid-State Slab Lasers</td>
<td></td>
</tr>
<tr>
<td>1:00 p.m. – 5:00 p.m.</td>
<td>SC276: Ultrafast Fiber Amplifiers</td>
<td></td>
</tr>
<tr>
<td>1:00 p.m. – 5:00 p.m.</td>
<td>SC277: Raman Laser Materials and Applications</td>
<td></td>
</tr>
</tbody>
</table>

Monday, January 29, 2007

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 a.m. – 5:00 p.m.</td>
<td>Registration</td>
<td>British Columbia Ballroom Foyer</td>
</tr>
<tr>
<td>8:00 a.m. – 8:15 a.m.</td>
<td>Opening Remarks</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>8:15 a.m. – 10:00 a.m.</td>
<td>MA: High Power Solid-State Lasers I</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>10:00 a.m. – 4:00 p.m.</td>
<td>Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>10:00 a.m. – 11:00 a.m.</td>
<td>MB: Poster Session I, Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>11:00 a.m. – 12:30 p.m.</td>
<td>Lunch (on your own)</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>12:30 p.m. – 2:00 p.m.</td>
<td>MD: VIS/UV Sources</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>2:00 p.m. – 3:30 p.m.</td>
<td>Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>3:30 p.m. – 4:00 p.m.</td>
<td>ME: Fiber Lasers</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>5:30 p.m. – 7:30 p.m.</td>
<td>Dinner (on your own)</td>
<td></td>
</tr>
<tr>
<td>7:30 p.m. – 9:00 p.m.</td>
<td>MF: Postdeadline Paper Session</td>
<td>British Ballroom</td>
</tr>
</tbody>
</table>

Tuesday, January 30, 2007

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 a.m. – 12:30 p.m.</td>
<td>Registration</td>
<td>British Columbia Ballroom Foyer</td>
</tr>
<tr>
<td>8:00 a.m. – 10:00 a.m.</td>
<td>TuA: Applications</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>10:00 a.m. – 1:00 p.m.</td>
<td>Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>10:00 a.m. – 11:00 a.m.</td>
<td>TuB: Poster Session II – Student Posters; Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>11:00 a.m. – 1:00 p.m.</td>
<td>TuC: Nonlinear Optics</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>7:00 p.m. – 10:00 p.m.</td>
<td>Conference Banquet</td>
<td>Pacific Ballroom</td>
</tr>
</tbody>
</table>

Wednesday, January 31, 2007

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 a.m. – 5:00 p.m.</td>
<td>Registration</td>
<td>British Columbia Ballroom Foyer</td>
</tr>
<tr>
<td>8:00 a.m. – 10:00 a.m.</td>
<td>WA: Ultrafast Lasers</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>10:00 a.m. – 4:00 p.m.</td>
<td>Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>10:00 a.m. – 11:00 a.m.</td>
<td>WB: Poster Session III, Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>11:00 a.m. – 12:30 p.m.</td>
<td>WC: Novel Technologies</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>12:30 p.m. – 2:00 p.m.</td>
<td>Lunch (on your own)</td>
<td></td>
</tr>
<tr>
<td>2:00 p.m. – 3:30 p.m.</td>
<td>WD: High Power Solid-State Lasers II</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>3:30 p.m. – 4:00 p.m.</td>
<td>Coffee Break & Exhibits</td>
<td>Columbia Ballroom</td>
</tr>
<tr>
<td>4:00 p.m. – 6:00 p.m.</td>
<td>WE: Mid-IR Sources</td>
<td>British Ballroom</td>
</tr>
<tr>
<td>6:00 p.m. – 6:30 p.m.</td>
<td>Closing Remarks and Presentation of Best Student Paper Prizes</td>
<td>British Ballroom</td>
</tr>
</tbody>
</table>
Conference Highlights

Tuesday, January 30, 2007

Pacific Ballroom
► 7:00 p.m. – 10:00 p.m.
Conference Banquet

Join your colleagues for the conference banquet, featuring a presentation by Richard Catalani, “CSI Productions on Forensic Lasers Use in CSI: Crime Scene Investigation.” All technical registrants receive a ticket with registration. Guest tickets may be purchased for US$ 75 and must be purchased by 12:00 p.m. on Monday, January 29.

► Banquet Speaker
Forensic Lasers Use in CSI: Crime Scene Investigation, Richard Catalani; CSI Productions, USA

The organizers of the Advanced Solid-State Photonics Topical Meeting gratefully acknowledge the generous support of the following government agencies:

Air Force Office of Scientific Research
Lawrence Livermore National Laboratory
National Aeronautics and Space Administration
ASSP 2007 Short Courses

Sunday, January 28, 2007 – 1:00 p.m. – 5:00 p.m.
► SC276 Ultrafast Fiber Amplifiers
Martin Fermann, IMRA America Inc, USA

Course Description
Attendees will be introduced to the unique capabilities of fiber amplifiers in the construction of high average power and high peak power laser systems. This course gives an overview of short pulse generation techniques in fiber amplifiers. All relevant aspects of high power fiber laser technology will be addressed, comprising diode pump sources, diode to fiber coupling techniques, seed sources and pulse generation in fiber oscillators, fiber amplifier material and spectroscopic properties, linear and nonlinear fiber amplification processes as well as thermal limitations and damage mechanisms. The emphasis will be on industrially relevant laser systems as used in instrumentation and optical processing. Numerous design examples will illustrate the recurring physical phenomena governing these systems.

Attendees will be introduced to the latest developments in ultra-large mode fiber and doped fiber technology. The properties of solid core, higher-order mode, micro-structure, photonic crystal fibers and fiber rods will be compared. The attendee will be introduced to the physical limits of such ultra large mode fibers in the construction of high peak power and high average power fiber amplifiers and how to optimally approach these limits in actual system design. Attendees will further learn how to construct all-fiber picosecond and femtosecond pulse sources and how to generate canonical pulse forms, such as solitons, gaussians, similaritons and cubicons. The relevance of these canonical pulse forms in high peak power amplification systems based on chirped pulse amplification in fiber amplifiers and nonlinear crystals will be elucidated and preferred options for pulse stretching and re-compression will be addressed. The course will conclude with a brief review of hot topics in fiber technology, comprising supercontinuum generation, THz generation, frequency combs and absolute phase control.

Benefits and Learning Objectives
This course should enable you to:

- Design optical systems for fiber amplifier pumping
- Build pico-and femtosecond fiber oscillator systems
- Build high peak and high average power fiber amplifier systems
- Design and model pulsed fiber oscillators and amplifiers
- Test the performance characteristics of fiber pulse sources
- Build fiber supercontinuum sources and fiber frequency combs

Course Level
Advanced Beginner (basic understanding of topic is necessary to follow course material)

Intended Audience
This course is intended for researchers, engineers and graduate students who are interested in a comprehensive review of current high power pulsed fiber laser technology. It will not only be a “how to” instruction but will also address the “why” for those who want to build their own fiber laser systems.

Instructor Biography
Martin E. Fermann is Director of Laser Research with IMRA America Inc. He has been involved in fiber and ultrafast laser research for more than 20 years. He has pioneered ultrafast fiber laser technology and has been a major force in the commercialization of ultrafast fiber laser systems. He has contributed to 250 peer-reviewed publications, has edited a book on ultrafast lasers and is the holder of 31 U.S. patents. Currently he is serving as guest editor for a JOSA B special edition on “fiber lasers” to be published by the Optical Society of America.
Sunday, January 28, 2007 – 1:00 p.m. – 5:00 p.m.
SC277 Raman Laser Materials and Applications
Tasoltan T. Basiev, General Physics Inst. RAS, Russian Federation

Course Description
This course focuses on the search and development of new nonlinear crystals for Raman shifters and lasers. It will be shown how the Raman Gain Spectroscopy, Coherent Anti-Stokes Raman Scattering and spontaneous Raman Scattering techniques can be used to evaluate the effect of line broadening, vibrational relaxation, temperature and crystal structure on the Raman gain and scattering cross section in various crystals. The comparative analysis of many different Raman-active crystals with different quasi-molecular anion groups (NO₃, NbO₄, WO₄, MoO₄ and VO₄) will be presented. Selection of the most promising crystals with the maximum Raman gain and scattering cross sections and their testing under nano- and picosecond pumping at different wavelengths will be outlined. The newly developed BaWO₄, SrWO₄, PbWO₄, BaMoO₄, SrMoO₄, PbMoO₄, YVO₄, GdVO₄ crystals with unique (both for steady-state and transient regimes) Raman characteristics used to design low-threshold highly efficient Raman frequency shifters and lasers will be described in detail. (In particular, the high-gain BaWO₄ crystal provides efficient multistage Raman shifting to new wavelengths in the mid IR, up to 3.69 μm.) Self-Raman-laser operation in LD-pumped Nd:GdVO₄, Nd: PbMoO₄ and Nd: SrMoO₄ laser-Raman crystals with the high energy conversion efficiency (>60%) and strong Raman laser pulse shortening (below 400 ps) will be reported.

It will be shown that solid state Raman lasers ensure a low divergence of the output laser radiation (one transverse mode), many watts of average power, high conversion efficiency (up to 50% at the external pumping and 90% at the intracavity pumping), effective shortening of nano- and picosecond pulses, and radiation tuning in an extremely wide frequency range. Eye-Safe and Sodium-Star laser projects will be touched as an example of application.

Benefits and Learning Objectives
This course should enable you to:

- Compare different Raman laser crystals in terms of the threshold and gain values, Raman frequency shifts and line broadening
- Determine the best regime of operation for specific Raman crystals
- Specify materials and constructions for Raman lasing and frequency shifting at specific wavelengths and duration of pumping
- Design low-threshold highly efficient Raman lasers and frequency shifters for picosecond to CW modes of operation
- Develop diode-pumped self-Raman lasers with strong pulse shortening and peak power increasing

Intended Audience
Scientists, engineers, students and research and development staff in the industry who use and develop laser and nonlinear crystals for laser frequency shifting, wavelength multiplication, pulse shortening, fast-switched optical amplification, and coherent light sources at new wavelengths (Raman shifters, Raman lasers, self-Raman lasers). General background in optics and lasers is required.

Instructor Biography
Tasoltan T. Basiev is a scientific deputy director and a division head at Laser Materials and Technology Research Center of GPI, Moscow, Russia. He received a master’s degree in electrical engineering at the Moscow Power Engineering Institute in 1972, a Ph.D. and doctoral degree in physics in 1977 and 1983 at Lebedev Physical Institute RAS. He has more than 30 years of experience in photonic materials and solid state lasers (research and development). He is the author of three books, 27 patents, 33 book chapters and review articles, and more than 300 scientific publications. Basiev is an OSA Fellow and an elected member of the Russian Academy of Engineering Sciences. He supervised 16 Ph.D. recipients.
Sunday, January 28, 2007 – 1:00 p.m. – 5:00 p.m.
[SC275 Solid-State Slab Lasers]
Hagop Injeyan, Richard Moyer; Northrop Grumman Corp., USA

Course Description
This course will provide students with an overview of solid state lasers, the issues associated with power scaling solid state lasers, and the characteristics of slab lasers that overcome or moderate these issues. Discussions will include scaling laws for slab geometry lasers and a comparison with rods. The course will present a historical perspective of how slab lasers have evolved over the last 20 years, focusing on the design features of various embodiments of slab lasers and the different techniques for pumping, cooling and extracting from slabs. The course will conclude with a comparison of how different groups across the industry are racing to scale power to 100 kW and beyond.

Benefits and Learning Objectives
This course should enable you to:

- Describe the top level characteristics of solid state lasers, issues that are unique to solid state lasers and common geometries of gain media including rods and slabs
- Identify the advantages of slabs over rods, including advantages in optical path differences (OPD) and stress induced birefringence, and learn about the power scaling laws for each geometry
- Discuss the characteristics of various pumping geometries of slabs, including side-pumping, edge-pumping and end-pumping, and how to determine optimal doping level for each geometry
- Describe various thermal management approaches and methods for controlling the OPD under steady state and heat capacity modes of operation
- Estimate power extraction from slab amplifiers using the modified Frantz-Nodvik equation for zig-zag propagation through slabs and how to use different eigenangles to multipass a slab
- Compare how different groups across the industry are trying to scale power to 100 kW and beyond

Course Level
Beginner (no background or minimal training is necessary to understand course material)

Intended Audience
Students, engineers, scientists and non-degreed professionals who have a basic knowledge of lasers and would like to learn about the unique aspects of slab lasers and how they are used to scale the power of solid state lasers.

Instructor Biography
Hagop Injeyan and Richard Moyer, graduates of the University of California at Los Angeles and Caltech respectively, have a combined experience of more than 60 years in laser development and related technologies. During the last 15 years, their work at Northrop Grumman Space Technology (formerly TRW) has focused on architectures using slab lasers, where they have contributed to scaling solid-state laser powers to record levels. They have also collaborated in developing two laser courses that have been used to provide solid-state laser training to more than 200 staff members at Northrop Grumman during the last two years.
2007 Program Abstracts

Sunday, January 28, 2007

British Columbia Ballroom Foyer
► 12:00 p.m. – 6:00 p.m.
Registration

► 1:00 p.m. – 5:00 p.m.
Short Courses
SC275: Solid-State Slab Lasers
SC276: Ultrafast Fiber Amplifiers
SC277: Raman Laser Materials and Applications

Monday, January 29, 2007

British Columbia Ballroom Foyer
► 7:00 a.m. – 5:00 p.m.
Registration

British Ballroom
► 8:00 a.m. – 8:15 a.m.
Opening Remarks

MA ● High Power Solid-State Lasers I
 British Ballroom
► 8:15 a.m. – 10:00 a.m.
MA ● High Power Solid-State Lasers I
Christopher A. Ebbers; LLNL, USA, Presider

MA1 ● 8:15 a.m. Invited
High-Power Thin-Disk Lasers, Adolf Giesen; Univ. of Stuttgart, Germany. The current status of the thin disk laser technology will be given for cw-operation and for pulsed-mode operation. Also the scaling laws and the scaling limits will be discussed in detail.

MA2 ● 8:45 a.m.
>400 W CW Operation of Diode Edge-Pumped, Composite All-Ceramic Yb:YAG Microchip Laser, Masaki Tsunekane, Takanori Taïra; Inst. for Molecular Science, Japan. 414W CW operation of a diode edge-pumped, composite all-ceramic Yb:YAG microchip (a 3mm-diameter core with a 200μm thickness) laser was successfully demonstrated. The emission power density of 0.29MW/cm² from the core is highest ever reported.

MA3 ● 9:00 a.m.
High Power Operation of Yb:LuVO₃ and Yb:YVO₃ Crystals in the Thin-Disk Laser Setup, Christian Kränkel, Rigo Peters, Klaus Petermann, Günter Huber; Inst. of Laser-Physics, Germany. A thin-disk Yb:LuVO₃ laser with 13 W output power at 33% optical-to-optical efficiency and slope efficiency of 50% is demonstrated for the first time. Power scaling of Yb:YVO₃ delivers 10 W with 43% slope efficiency.

MA4 ● 9:15 a.m.
Thin-Disk Laser Operation of Yb⁺⁺-Doped NaGd(WO₄)₂, Rigo Peters, Christian Kränkel, Klaus Petermann, Günter Huber; Inst. of Laser-Physics, Germany. We report on high-power Yb:NaGd(WO₄)₂ laser using the thin-disk geometry. 16.5W of output power at 1.026μm with a slope efficiency of 59% was obtained from a 10.7at% -doped 0.1mm-thin disk under diode-pumping with 42W at 975nm.

MA5 ● 9:30 a.m.
Characterization and Stabilization of High-Power Solid-State Lasers, Benno Wilke³, Patrick Kueve, Frank Seifert², Maik Frede²; Leibniz Univ. Hannover, Germany, ³Max-Planck-Instit. für Gravitationsphysik, Germany, ²Deutsches Zentrum für Luft- und Raumfahrt, Germany. Modern laser applications require high-power laser with very high stability. We discuss stabilization concepts, the highest power stability ever achieved (RIN=3.5E-9/sqrt(Hz)) and a tool to measure fractional power below 2E-4 in higher order spatial modes.

MA6 ● 9:45 a.m.
Picossecond Regenerative Yb:YAG Thin Disk Amplifier at 200 kHz Repetition Rate and 62 W Output Power, Christian Stolzenburg, Adolf Giesen; Inst. für Strahlwerkszage, Germany. We report on a picosecond regenerative Yb:YAG thin disk amplifier capable of delivering 62 W of average output power with repetition rates up to 200 kHz and nearly diffraction-limited beam quality.

Columbia Ballroom
► 10:00 a.m. – 4:00 p.m.
Exhibits

MB ● Poster Session I
Columbia Ballroom
► 10:00 a.m. – 11:00 a.m.
MB ● Poster Session I

MB1
Activation of a Spatial, Temporal, and Spectrally Sculpted Front End for the Mercury Laser, J. P. Armstrong, A. Bayramian, R. Beach, R. Campbell, J. Daeson, Christopher A. Ebbers, B. Frietas, R. Kent, R. Lanning, S. Telford, E. Utterback; LLNL, USA. We have produced over 500 mJ using a hybrid fiber-based master-oscillator system coupled with a Yb:SFAP power amplifier. This system is designed with spatial, temporal, and spectral sculpting enabling broadband amplification correctable for gain narrowing.

MB2
42-mJ Q-Switched Active-Mirror Laser Oscillator with a Cryogenic Yb:YAG Ceramics, Junji Kawanaka¹, Shigeki Tokita¹, Hajime Nishioka², Ken-ichi Ueda³, Masayuki Fujita¹, Toshiyuki Kawasaki¹, Hideki Yagi², Takagini Yasagitan¹²; ¹Inst. of Laser Engineering, Japan, ²Inst. for Laser Science, Japan, ³Inst. for Laser Technology, Japan, ⁴Hamamatsu Photonics K. K., Japan, ⁵Kosmoshima Chemical Co. Ltd., Japan. A 42-mJ Q-switched laser oscillator has been demonstrated using an active-mirror Yb:YAG ceramics at low temperature. The extraction density of the pulse energy from the unit ceramics volume is up to 17J/cm².
MB3

High Average Power Ho:YAG Laser, Ian Elder; SELEX Sensors and Airborne Systems Ltd., UK. 27.4 W of average power in a beam with M² < 1.5 is demonstrated from a repetitively Q-switched Ho:YAG laser pumped by a thulium fibre laser.

MB4

Optical Parametric Chirped Pulse Amplification for the PETAL Front-End: Design and First Results, Emmanuel Hugonnot, Gérard Deschasaux, Olivier Hartmann, Nicolas Beck, Hervé LiNbO, Room, France. We present the design and the first results of the front-end for the French LIL multi-Petawatt Laser Facility (PETAL) based on OPCPA architecture.

MB5

Yb-Doped Sesquioxide Ceramics: Temperature Dependent Laser Performance and Spectroscopy, Nikolay Ter-Gabrielyan, Mark Dubinski, Larry D. Merkle, Alex Newburgh; ARL, USA. We observe that laser performance improves far more upon cooling to nitrogen temperature in ceramic Yb:Y2O3 than in Yb:Sc2O3. Differences in the temperature dependence of their spectra suggest a possible reason for this difference.

MB6

The Onset of Optical Parametric Generation in Long Periodically-Poled Crystals, Shy Acco1, Pinhas Blau1, Shaul Pearl1, Ady Arié1; SOREQ NRC, Israel, 1School of Electrical Engineering, Tel-Aviv Univ., Israel. OPG emission in long periodically-poled MgO:LiNbO3 crystals pumped by a Q-switched Nd:YVO4 laser was characterized. The experimental results obtained for small gain-length product (g0L<10) are in excellent agreement with quantum mechanical model calculations.

MB7

Comparative Study on the Coercive Field in Undoped and MgO-Doped Congruent LiNbO3, Hideki Ishizuki, Takanori Taira; Laser Res. Ctr., Inst. for Molecular Science, Japan. The coercive fields of undoped and MgO-doped congruent LiNbO3 were compared using ramping electric-field application. The MgO-doped LiNbO3 was poled inversely at ~2kV/mm electric field by ramping field of 10V/mm/s at room temperature.

MB8

Difference Frequency Generation in a ZnGeP2 Crystal Pumped by a Large Aperture Periodically Poled MgO:LiNbO3 Optical Parametric System, Jiro Saikawa1, Mitsuhiro Miyazaki1, Masaki Fuji1, Hideki Ishizuki1, Takanori Taira1; 1Tokyo Inst. of Technology, Japan, 2Inst. for Molecular Science, Japan. We have developed a high-energy (>30mJ), narrow-bandwidth (~2nm) optical parametric system with large-aperture PPMgLN devices. The optical parametric system was employed in a ZnGeP2; difference frequency generation system and tunable mid-infrared generation was observed.

MB9

High-Energy, Sub-Nanosecond Pulse Duration Intracavity Pumped KTP OPO at 1372 nm, Paul D. Mason, Brian J. Perrett; QinetiQ, UK. Sub-nanosecond duration eyesafe pulses at 1372 nm with energies of up to 10 mJ are produced for high precision ranging applications by cavity-dumped operation of an intracavity-pumped KTP OPO.

MB10

Parametric THz Generation Pumped by Q-Switched Fiber Lasers in GaSe Crystal, Wei Shi, Matt Leigh, Jie Zong, Shibin Jiang; NP Photonics, Inc., USA. Two fiber lasers were simultaneously Q-switched by using one piezo to modulate the intracavity polarization-dependent loss, which were amplified as pump sources. Coherent and single-frequency THz radiation has been firstly achieved by using all-fiber lasers.

MB11

Efficient Nonlinear Frequency Conversion to 193-nm Using Cooled BBO, Andrew J. Merriman1, James J. Jacob2, Donald S. Bethune3, John A. Hoffnagle4; 4Actinium, USA, 5IBM Almaden Res. Ctr., USA. We have developed a 5-kHz 193-nm laser source that generates a near-diffraction-limited TEM00 beam with 35 mW average power. The conversion efficiency and stability are both significantly enhanced by cooling the BBO sum-frequency mixing crystal.

MB12

Backswitching and Fixing of Periodically Poled Structure in Low Coercive Field Stoichiometric LiTaO3, Xiaoyan Liu, Kenji Kitamura, Kazuya Terabe, Shunji Takekawa; Natl. Inst. for Materials Science, Japan. Temperature-induced backswitching in near-stoichiometric LiTaO3 QPM devices was investigated. Backswitching consistently occurred due to heat treatment. We found two effective methods for fixing of fine periodically poled structures. They are cutting-edge methods and ion implantations.

MB13

Modeling and Characterization of High-Efficiency, High Power Cascaded Intracavity Optical Parametric Oscillators in the Mid-Infrared, Gabriel Mennerat1, Arnaud Grisard1, Eric Lallier2, Jean-Eucher Montagne1, Olivier Squaglia1; 1CEA - Commissariat a l’Energie Atomique, France, 2Thales Res. & Technology, France, 3Compagnie Industrielle des Lasers, France. Modeling and demonstration of efficient intracavity cascaded PPLN OPO which converts 20% energy from 1.06-μm to three bands in the 2.5-μm range. Spatio-temporal simulation of cascaded processes correctly estimates self-induced thermal lensing and efficiency saturation.

MB14

300K-7.8K Temperature Dependence of the Verdet Constant of Terbium Gallium Garnet Ceramic, Ryo Yasuhara1, Shigeki Tokita2, Junji Kawanaka2, Hideki Yagi3, Hoshiteru Nozawa2, Takahiro Yanoagita2, Toshiyuki Kawanishi1, Hirofumi Kan1; 1Hamamatsu Photonics K. K., Japan, 2Inst. of Laser Engineering, Osaka Univ., 3Tokoyama Chemical Co. Ltd., Japan. As the first demonstration of Faraday effect in a TGG ceramics, its Verdet constant at 1053nm was evaluated to be 1453 rad/Tm at 7.8 K which is 40 times greater than that at 300 K.
MB15
Polarization-Maintaining 1064 nm Fiber MOPA System with Narrow Bandwidth for Wavelength Conversion, Yusio Wada1, Tatsuya Shinozaki2, Yoshiharu Urata1, Yushi Kaneda1, Satoshi Wada3, Shinichi Imai1; 1Maegato Co., Ltd., Japan, 2Advanced Mask Inspection Technology Inc., Japan. A seeded pulsed diode oscillator and fiber amplifiers are used to obtain a polarized single-mode output with 750 MHz linewidth and over 1 kW peak power with low-nonlinearity for wavelength conversion applications.

MB16
Broadband Optical Parametric Amplification at the Communication Band with Periodically Poled Lithium Niobate Pumped by Ps-Laser Pulse, Oc-Yeul Jeon, Min-Ji Jin, Huan-Hong Lim, Byoung-Joo Kim, Myungseok Cha; Pusan Natl. Univ., Republic of Korea. We report broadband optical parametric amplification in a periodically poled LiNbO3 crystal. A 20 dB-gain was obtained for a broadband signal at 1580 nm with a 35 ps-pump at a fixed wavelength of 870 nm.

MB17
Yb-Bi Pulsed Fiber Lasers, Vladislav V. Droginin, Valery M. Mashinsky, Oleg I. Medvedkov, Evgenii M. Dianov; Fiber Optics Res. Ctr., RAS, Russian Federation. Bi-doped fiber laser inside Yb fiber laser cavity causes a pulsed lasing of the both lasers. 975 nm diode pumping of Yb-Bi laser resulted in 1050-1200 nm lasering with pulse energy up to 100 μJ.

MB18
470 mW of Blue Laser Emission by Frequency Doubling of CW Oscillation Nd:ASL with LBO Crystal Using a V-Type Cavity, Cyrille Varona1, Pascal Loiseau1, Gérard Akot2, Bernard Fernand1, Philippe Villeval1, Dominique Lupinski1; 1CNRS LMR, France, 2CEA - LETI, France, 3Cristal Laser, France. 470mW of blue output laser emission at 450nm was generated by frequency doubling of Nd:ASL crystal SrLa3Nd3MgAl2O12 (x=0.3, y=0.05) with a 7mm-long LBO nonlinear crystal. The cavity was V-type associated with a CW Ti:sapphire pumping source.

MB19
Power Scaling of End-Pumped Nd:YAG Rod Lasers into the Kilowatt Region, Ralf Wilhelm, Maiq Frede, Dietmar Kracht; Laserzentrum Hannover, Germany. A method for scaling end-pumped rod lasers to high output powers by employing multi-segmented crystals in a pump light double pass is presented and a design example for 2 kW of pump power is given.

MB20
High-Power, Direct Upper Laser Level Compared to Traditionally Nd:YAG Pumping, Maiq Frede, Dennis Freiburg, Ralf Wilhelm, Dietmar Kracht; Laserzentrum Hannover, Germany. A high-power, highly-efficient, multi-segmented, end-pumped Nd:YAG laser by pumping into the upper laser level is demonstrated. In comparison with traditional Nd:YAG pumping at 807 nm the advantages of upper laser level pumping are demonstrated experimentally.

MB21
Phase-Conjugated 2-μm Laser System, Yingxin Bai1, Jirong Yu2, M. Petros3, Paul Petzar1, Bo Trieu1, Huong Lee4, U. Singh5, V. Leyva1, V. Shikumura6, D. Rockwood1, A. Better2, J. Wang1; 1Science Applications Intl. Corp., USA, 2NASA Langley Res. Ctr., USA, 3Science and Technology Corp., USA, 4Dept. of Physics, Hampton Univ., USA, 5Raytheon Space & Airborne Systems, USA. For the first time, beam quality improvement of 2 μm laser using fiber based phase conjugation mirror has been demonstrated. Single frequency operation is necessary to lower threshold. The reflectivity of the PCM is ~50%.

MB22
Tunable Green Yb-Doped Fiber Laser, Vladimir A. Akulov1, Denis M. Afanasiev1, Sergey A. Babintsev1, Dmitriy V. Churkin1, Sergei I. Kabliukov1, Michael A. Rybakov1, Alexander A. Vlasov1; 1Inst. of Automation and Electrometry, Russian Federation; 2Inversion Fiber Co., Russian Federation. A tunable Yb-doped fiber laser with intracavity frequency doubling in KTP nonlinear crystal has been realized. 0.4 W green output power with 540-548 nm tuning has been achieved.

MB23
Polarization-Maintaining Fiber Pulse Compressor by Birefringent Hollow-Core Photonic Bandgap Fiber, Akira Shirakawa, Motoyuki Tanisho, Ken-ichi Ueda; Inst. for Laser Science, Univ. of Electro-Communications, Japan. Structural birefringent properties of a hollow-core photonic-bandgap fiber were carefully investigated and applied to all-fiber chirped-pulse amplification. Preferable polarization-maintaining fiber-pigtail output of clean 440-fs pulses was obtained without any pulse degradation by polarization-mode dispersion.

MB24
First Laser Operation at 899 nm and below in a Diode End-Pumped Nd:YAG, Marc Castang, Emilie Hérault, François Balembois, Patrick Georges; Inst. d’Optique, France. We present the first demonstration of a 899-nm-laser-emission in a Nd:YAG-crystal, on the F4p-5I2 transition. 630mW of average power is obtained at 899nm and 100mW at 450nm after an intracavity frequency doubling.

MC • High Efficiency Yb Lasers
British Ballroom
◆ 11:00 a.m. – 12:30 p.m.
MC • High Efficiency Yb Lasers
Robert Rice; Northrop Grumman, USA, Presider

MC1 • 11:00 a.m. Invited
High-Power Cryogenically Cooled Yb:YAG Lasers, Daniel J. Ripin; MIT Lincoln Lab, USA. Abstract unavailable.

MC2 • 11:30 a.m.
Q-Switched Cryo-Cooled Yb:YAG Laser, Bhabana Pati, Kevin F. Wall; Q Peak, Inc., USA. Using a side-pumping geometry, we obtained 400 W of cw power with 56% optical-to-optical efficiency from a cryogenically-cooled, Yb:YAG laser. In the Q-switched operation, we obtained 200 W with a near diffraction limited beam.
MC3 • 11:45 a.m.
Picosecond Cryogenic Yb:YAG Multipass Amplifier with 23.7 W Average Output Power, Shišeki Tokita¹, Junji Kawanaka¹, Masayuki Fujita¹, Toshiqui Kawashima¹, Yasuzaku Izawa¹; ¹Osaka Univ., Japan, ²Inst. for Laser Technology, Japan, ³Hamanatsu Photonics K. K., Japan. We have demonstrated an 8-pass picosecond laser amplifier using a liquid-nitrogen-cooled Yb:YAG crystal. Over 20-W average-power was obtained with sub-millijoule pulse energies and M² factor of less than 1.2.

MC4 • 12:00 p.m.
Tunable Yb:KYW Laser with a Volume Bragg Grating, Jonas E. Hellström, Björn Jacobsson, Valdas Passiškevičius, Fredrik Laurell; Laser Physics, KTH, Sweden. We demonstrate a tunable Yb:KYW laser, locked by a volume Bragg grating in a retroreflector geometry. The power was ~1 W within the tuning range from 1032 nm to 1048 nm.

MC5 • 12:15 p.m.
Intense Few-Cycle Optical Parametric Chirped-Pulse Amplifier Pumped by a Cryogenically-Cooled Yb-Doped Solid-State Chirped-Pulse Amplification Laser, Kanade Oganov¹, Makoto Aoyama¹, Yutaka Akahane¹, Koichi Tsujii¹, Junji Kawanaka¹, Hajime Nishikawa¹, Tetsuo Harimoto¹, Masayuki Fujita¹, Koichi Yamakawa¹; ¹Japan Atomic Energy Agency, Japan, ²Inst. of Laser Engineering, Osaka Univ., Japan, ³Inst. for Laser Science, Univ. of Electro-Communications, Japan, ⁴Faculty of Engineering, Univ. of Yamanashi, Japan, ⁵Inst. for Laser Technology, Japan. We report a terawatt-class few-cycle OCPA system with an ultra-broad bandwidth of over 400 nm pumped by double broadband pump pulses delivered from an Yb-doped solid-state CPA laser cooled to liquid nitrogen temperatures.

► 12:30 p.m. – 2:00 p.m.
Lunch (on your own)

MD • VIS/UV Sources

British Ballroom
► 2:00 p.m. – 3:30 p.m.
MD • VIS/UV Sources
Jirong Yu; NASA Langley Res. Ctr., USA, Presider

MD1 • 2:00 p.m.
Linearly-Polarized Yb-Doped Fiber Laser Directly Operating at 1178 nm for 589-nm Generation, Akira Shirakawa, Jun Ota, Hiroki Maruyama, Ken-ichi Ueda; Inst. for Laser Science, Univ. of Electro-Communications, Japan. Successful operation of 1178nm Yb-doped fiber laser is reported. Polarization selection by an all-fiber configuration enables a high-Q operation required to suppress parasitic lasing, and 1.9W linearly-polarized output with narrow bandwidth (~50pm) was obtained.

MD2 • 2:15 p.m.
Design and Operation of All-Solid-State, 320 mW Continuous-Wave Yellow Laser, Peter Dekker, Helen M. Pask, James A. Piper; Macquarie Univ., Australia. Continuous-wave powers up to 320mW at 588 nm and quasi-cw powers up to 700mW are reported from diode-pumped Nd:GdVO₃ laser with intracavity Raman-shifting (KGW) and intracavity frequency-doubling (LBO) are reported, with efficiency up to 3.2%.

MD3 • 2:30 p.m.
Linearly-Polarized, Narrow-Linewidth, High-Power, 1150-nm Yb-Doped Silica Fiber MOPA for Frequency Doubling to the Yellow, Supriyo Sinha, Karel E. Urbaneck, Michel J. F. Digonnet, Robert L. Byer; Stanford Univ., USA. We report a Yb-doped silica fiber MOPA producing a record output power of 2.34 W at 1150 nm, linearly-polarized, for 5.5 W of launched 1064-nm pump power.

MD4 • 2:45 p.m.
34 W CW Intracavity-Doubled TEM₀₀ Nd:YVO₃ Green Laser Pumped at 888 nm, Louis Mc Donagh, Richard Wallenstein, Technische Univ. Kaiserslautern, Germany. We present a cw intracavity frequency-doubled TEM₀₀ Nd:YVO₃ laser oscillator pumped at 888 nm, producing 34 W of green light at 532 nm with M² = 1.05 and RMS noise of 0.25%.

MD5 • 3:00 p.m.
Tunable High-Power Blue-Green Laser Based on Intracavity Frequency Doubling of a Diode-Pumped Vertical-External-Cavity Surface-Emitting Laser, Li Fanzhi, Mahmoud Fallahi², Jorg Hader³, Aramais R. Zakharian⁴, Jerome V. Moloney⁴, James T. Murray⁴, Robert Bedford⁴, Stephan W. Koch⁴, Wolfgang Stolz⁴; ¹College of Optical Sciences, USA, ²Aresta Associates, USA, ³AFRL, USA, ⁴Philipps Univ. Marburg, Germany. We present the development and demonstration of tunable high-power blue-green (around 488 nm) laser by using intracavity frequency doubling of a tunable high-power high-brightness linearly polarization vertical-external-cavity surface-emitting laser.

MD6 • 3:15 p.m.
UV Picosecond Microchip Cerium Lasers, Hua Liu¹, David J. Spence¹, K. Johnson¹, David W. Coutts¹, H. Sato², T. Fukuda³; ¹Macquarie Univ., Australia, ²Tohoku Univ., Japan. We present all solid-state, microchip-type Ce:LiCAF and Ce:LiLuF lasers, that generate picosecond laser pulses at 289nm and 309nm using a relatively inexpensive Nd:YVO₃ microchip pump laser.

Columbia Ballroom
► 3:30 p.m. – 4:00 p.m.
Coffee Break & Exhibits

ME • Fiber Lasers

British Ballroom
► 4:00 p.m. – 5:30 p.m.
ME • Fiber Lasers
Jens Limpert; Inst. of Applied Physics, Germany, Presider
ME1 • 4:00 p.m.
Experimental Demonstration of Gain Guided Lasing in an Index Anti-Guiding Large Mode Area Fiber, Ying Chen1, Vikas Sudeshi2, Martin C. Richardson1, Michael Base1, John Ballato1, Anthony E. Siegman1; 1CREOL, Univ. of Central Florida, USA, 2Clemson Univ., USA, 3Stanford Univ., USA.
Recent observations of apparently single mode gain-guided lasing in Nd3+ fibers with 100 μm diameter index anti-guided cores demonstrate the potential of gain guiding for single mode fiber lasers with very large mode areas.

ME2 • 4:15 p.m.
Effectively Single-Mode Chirally-Coupled Core Fiber, Chi-Hung Liu1, Guangping Chang1, Natasha Litchinitser1, Almantas Galvanauskas1, Dong Guertin1, Nick Jabobson1, Kanishka Tinkala1; EECS Dept., Univ. of Michigan, USA, NUFERN, USA.
We demonstrate Chirally-Coupled-Core (CCC) fiber with 35-μm diameter and 0.07 NA core which is effectively single-mode. This is a new type of fibers whose modal properties are defined both by their longitudinal and transverse structure.

ME3 • 4:30 p.m.
Robust Fundamental Mode Operation in a Ytterbium-Doped Leakage Channel Fiber with an Effective Area of ~3000μm2, Jun Li, Xiang Peng, Liang Dong; IMRA America Inc., USA.
We report the fundamental mode operation in a ytterbium-doped fiber with effective areas of ~3000μm2, which can be coiled down to 15cm radius. Lasers with slope efficiency ~60% and M2 ~1.3 have been demonstrated.

ME4 • 4:45 p.m.
Very High Efficiency, High Peak Power, Nanosecond Fiber Lasers, Ramatou Bello Doua, Julien Saby, Francois Salin; FEMLIGHT, France.
We demonstrated over 50% absolute efficiency in a diffraction limited Q-switched fiber laser producing pulses as short as 6.7ns. 130kW peak and 50W average powers were obtained at repetition rates from 10 to 100kHz.

ME5 • 5:00 p.m.
All-Normal-Dispersion Femtosecond Fiber Laser with Pulse-Shaping Due to Spectral Filtering, Andy Chong, Joel R. Buckley, Will H. Renninger, Frank W. Wise; Cornell Univer., USA.
A modelocked Yb-doped fiber laser without an anomalous segment is successfully demonstrated. Pulse-shaping is based on spectral filtering of a highly-chirped pulse in the cavity. The laser generated 170-fs pulses with 3-nJ pulse energy.

ME6 • 5:15 p.m.
A master-oscillator fiber amplifier system, delivering up to 133 W of continuous-wave output power using a tunable single-frequency external-cavity diode seed laser is presented. Stable high-power operation between 1040 nm and 1085 nm was obtained.

► 5:30 p.m. – 7:30 p.m.
Dinner (on your own)

MF • Postdeadline Paper Session

British Ballroom
► 7:30 p.m. – 9:00 p.m.
MF • Postdeadline Paper Session
Jonathan D. Zuegel, Univ. of Rochester, USA

Tuesday, January 30, 2007

British Columbia Ballroom Foyer
► 7:30 a.m. – 12:30 p.m.
Registration

Tu • Applications

British Ballroom
► 8:00 a.m. – 10:00 a.m.
Tu • Applications
Ingmar Hartl; IMRA America, Inc., USA, Presider

TuA1 • 8:00 a.m. Invited
Precision Timing, Measurements and Optical Clocks Using Solid State Lasers, Leo Hollberg; NIST, USA.
Revolutionary advances in the performance of atomic clocks results from some new ideas, precision spectroscopy of ultra-cold atoms, and maturing technologies of stable lasers. Frequency stabilized solid-state lasers are playing increasingly important roles.

TuA2 • 8:30 a.m.
Radian-Level Coherent Optical Links over 100’s of Meters and 100’s of Terahertz, Ian R. Coldington, Qudsia Qurashi, Luca Lorini, William Swann, Jim Bergquist, Chris Oates, Scott Diddams, Nate Newbury; NIST, USA.
We demonstrate coherent transfer of optical signals with radian level noise in a 25 MHz bandwidth through a series of laser systems spanning from 657 nm to 1550 nm and over several hundred meter distances.

TuA3 • 8:45 a.m. Invited
Fiber lasers for sensing and spectroscopy require a combination of low noise, high power and access to a variety of wavelengths. These issues are discussed with emphasis on methods to reduce frequency noise.

TuA4 • 9:15 a.m.
Generation of a Squeezed Vacuum Field with PPKT at 1064nm for Gravitational Wave Interferometers, Shailendhir Saraf, Keisuke Goda, Nergis Mavalvala, Eugeniy Mikhailov, Osamu Miyakawa; Rochester Inst. of Technology, USA, MIT, USA, Caltech, USA.
Squeezed vacuum generation at 1064 nm in a PPKT-based optical parametric oscillator is demonstrated for sensitivity improvements in gravitational wave detectors. Broadband squeezing of >2.5dB is reported in the 1-100 KHz frequency range.
TuA5 • 9:30 a.m.
Miniature Eye-Safe Laser System for High-Resolution Three-Dimensional Lidar, John J. Zaykowski, Alexander L. Wilson; MIT Lincoln Lab, USA. A microchip-laser-pumped OPA produces 25-μJ, 1.537-μm pulses of 114-ps duration at 8 kHz, in a near-diffraction-limited beam. The flight-ready system is pumped by fiber-coupled diodes, has a volume <0.14 liters and mass <0.34 kg.

TuA6 • 9:45 a.m.
Solid-State Laser-Driven Free-Electron Based Coherent Attosecond Radiation Sources, Tomas Plettner, Robert L. Byer; E.L. Ginzton Labs, USA. We propose a free-electron based attosecond coherent X-ray source powered by a laser-driven particle accelerator capable of producing sub-optical cycle electron pulses. The design parameters for the device are established by the one-dimensional FEL model.

Columbia Ballroom
► 10:00 a.m. – 1:00 p.m.
Exhibits

TuB • Poster Session II – Student Posters

Columbia Ballroom
► 10:00 a.m. – 11:00 a.m.
TuB • Poster Session II – Student Posters

TuB1
Similariton Fiber Laser around 1 μm with a Photonic Bandgap Fiber for Dispersion Control, Axel Ruehl, Oliver Prochnow, Dieter Wandt, Dietmar Kracht; Laser Zentrum Hannover e.V., Germany. We demonstrate a hybrid mode-locked similariton fiber laser with a photonic bandgap fiber for dispersion control. The laser generates highly-stretched parabolic pulses with pulse energies of 290 pJ at a repetition rate of 21.9 MHz.

TuB2
Parabolic Pulse Regime of an Ultrafast Fiber Laser, Axel Ruehl1, Oliver Prochnow1, Dieter Wandt1, Dietmar Kracht1, Bryan Burgoyne1, Nicolas Godbout1; Suzanne Lacroix2; ‘Laser Zentrum Hannover e.V., Germany, 2Ecole Polytechnique Montreal, Canada. We report on experimental and numerical results about the parabolic pulse regime in a passively mode-locked fiber oscillator. Beside a detailed description of the pulse dynamics, fundamental design guidelines and possible optimizations are discussed.

TuB3
Chirped-Pulse Amplification of Femtosecond Pulses in a Yb-Doped Fiber Amplifier near the Gain Narrowing Limit Using a Reflection Grism Compressor, Lyuba Kuznetsova1, Frank Wise1, Steve Kane1, Jeff Squier1; ‘Dept. of Applied and Engineering Physics, Cornell Univ., USA, ‘Horiba Jobin Yvon, Inc., USA, ‘Dept. of Physics, Colorado School of Mines, USA. Compensation of third-order dispersion using a high-efficiency reflection grism pair is demonstrated for the first time in an all-fiber chirped-pulse amplification system. Transform-limited 120 fs pulses are produced near the Yb gain-narrowing limit.

TuB4
Extremely Low Quantum Defect Oscillation of Ytterbium Fiber Laser by Laser Diode Pumping at Room Temperature, Shinichi Matsubara1, Kyousuke Uno2, Yoshiaki Nakajima1, Sakae Kawato1, Takao Kobayashi1, Akira Shirakawa1; ‘Fiber Amenity Engineering, Graduate School of Engineering, Univ. of Fukui, Japan, 2Inst. for Laser Science, Univ. of Electro-Communications, Japan. Ytterbium laser emissions at 980.6 nm and 983.0 nm are observed by laser diode pumping at 978.1 nm while room temperature. Their quantum defects are 0.26% and 0.50%, respectively.

TuB5
Impact of Spatial-Hole Burning on Beam Quality in Large Mode-Area Yb-Doped Fibers, Zhao Jiang, John R. Marcante; Univ. of Rochester, USA. The effects of spatial-hole burning are explored in multimode active fibers. A propagation model using the fiber modes is used to explain experimentally observed behavior. Local gain saturation is required for accurate explanation of physics.

TuB6
A Self-Imaging Silicon Waveguide Raman Amplifier, Varun Raghunathan1, Robert R. Rice, Bahram Jalali2; ‘Univ. of California at Los Angeles, USA, 2Northrop Grumman Space Technology, USA. We propose a novel self-imaging Raman amplifier consisting of collinearly propagating pump and Stokes signal beams in a multimode silicon waveguide. Potential application as an image preamplifier for MWIR remote sensing is discussed.

TuB7
Molecular Beam Epitaxy Growth of Nd:Y2O3 for Planar Waveguide Lasers, I. C. Robin1, R. Kamara1, S. Benson1, S. E. Webster1, T. Tiedje1, A. Oleinik1; ‘Univ. of British Columbia, Canada, 2Zecotek Medical Systems Singapore Pte Ltd, Singapore. Thin films of Nd:Y2O3 have been grown by molecular beam epitaxy. The deposition process has been optimized to generate materials with excellent crystalline and optical properties that are suitable for planar waveguide lasers.

TuB8
Transversal Mode Transformation in Reflective Volume Bragg Gratings, Theory and Experiments, Björn Jacobsson, Jonas E. Hellström, Valdas Pasiskevicius, Fredrik Laurell; Laser Physics, KTH, Sweden. We present a theoretical model describing finite beams incident at volume Bragg gratings and confirm it experimentally. Reflectivity decreases with increasing incidence angle and decreasing beam size, and the transmitted transversal mode profile is transformed.

TuB9
New Nonlinear Optical Crystal for UV Light Source: Calcium Fluoroborate, Ke Xu, P. Loiseau, G. Aka; ENSCP, France. Single crystals of calcium fluoroborate, CaS(BO3)2F have been grown by flux method. The refractive indices were measured by the minimum deviation technique and fitted to the Sellmeier equations. SHG and THG phase matching are discussed.
TuB10
Second Order Mode Selective Phase-Matching, Mikael Lassen1,2, Vincent Delaubert1,2, Hans-A. Bacher1, Ping Koy Lam1, Nicolas Treps1, Preben Buchhave1, Charles Harbe1; 1Dept. of Physics, Technical Univ. of Denmark, Denmark, 2Australian Natl. Univ., Australia, 3Lab Kastler Brosset, France, 4Univ. of New South Wales, Australia. We exploit second order nonlinear optical phase matching for the selection of individual high order transverse modes. The ratio between the generated components can be adjusted continuously via changes in the phase-matching condition.

TuB11
Frequency Quadrupled Picosecond Fiber Laser for UV Generation, Onur Kuzucu1, Franco N. C. Wong2, David E. Zelmon2, Shrkrishna M. Hegde1, Tony D. Roberts3, Philip Battle; 1MIT, USA, 2AFRL, USA, 3AdvR, Inc., USA. We demonstrate efficient picosecond UV generation by means of frequency quadrupling of an amplified picosecond fiber laser. The narrowband 390-nm source with 250 mW is suitable for a number of quantum information processing tasks.

TuB12
Accurate Sizing of an Extremely Small Amount of Brownian Particles in Water with a Laser-Diode-Pumped Self-Mixing Thin-Slice Nd:GdVO4 Laser, Kauk Nemoto1, Yoshihiko Miyasaka1, Koji Kaminari2, Seiichi Sudo1, Kenju Otsuka; 1Dept. of Physics, Tokai Univ., Japan, 2Dept. of Human and Information Science, Tokai Univ., Japan. Doppler particle sizing by self-mixing laser was demonstrated by using a laser-diode-pumped thin-slice Nd:GdVO4 laser. Quick and accurate sizing of 262-nm polystyrene spheres with concentration as low as 0.05 ppm in water has been achieved.

TuB13
Experimental Study of Kilowatt-Average-Power Faraday Isolators, Ivan B. Mukhin, Efim A. Khazanov, Oleg V. Palashov, Alexander V. Voytovich; Inst. of Applied Physics, Russian Federation. We designed two 20mm-aperture Faraday isolators with thermal effects compensation. The isolation ratio (limited by the quality of TGG crystals) was 24dB at 750W average power for one isolator and 42dB at 200W for another.

TuB14
Magnesium-Oxide Doped PPLN for Intracavity Frequency Doubling of Semiconductor Disk Lasers, Reni Hartke, Ernst Heumann, Günter Huber; Inst. of Laser-Physics, Univ. of Hamburg, Germany. We report on the use of magnesium-oxide doped periodically poled lithium niobate for intracavity frequency doubling of a vertical external cavity surface emitting laser. 76mW of amplitude fluctuation free green output could be demonstrated.

TuB15
High-Gain, End-Pumped, Yb:YAG Zig-Zag Slab Amplifier for Remote Sensing Applications, Arun Kumar Sridharan1, Robert L. Byer1, Shailendhrar Saraf2; 1Stanford Univ., USA, 2Rochester Inst. of Technology, USA. We describe a laser-diode end-pumped Yb:YAG zig-zag slab amplifier with high-gain and with novel parasitic oscillation suppression. This could enable efficient energy scaling to meet the laser requirements for remote win d sensing.

TuB17
Self-Heterodyne Performances of Ceramic Nd:YAG Lasers, Aaron McKay1, Peter Dekker2, David W. Coutts3, Judith M. Dawes1, Jong-Dae Park; 1Ctr. for Lasers & Applications, Macquarie Univ., Australia, 2Dept. of Physics, Pai-Chai Univ., Republic of Korea. Ceramic Nd:YAG dual-frequency lasers offers superior performances as a photonic-based radiofrequency source over crystalline Nd:YAG-based dual-frequency lasers. The power of the self-heterodyne signal is on average 6 dB stronger for ceramic compared to crystalline lasers.

TuB18
Nd:GSGG Laser Amplifier at 942 nm Wavelength, Frank Kallmeyer1, Markus Dziadzina1, Daniel Schmidt1, Hans J. Eichler1, Rainer Treichl1, Susanne Nikolov1; 1Technical Univ. Berlin, Germany, 2EADS Astrium GmbH, Germany. The measurement of the stimulated emission cross-section in Nd:GSGG in the 941-944nm wavelength-region is presented. A peak-cross-section of 4.0·10⁻²⁷cm² and FWHM-linewidth of 1.5nm was obtained. Also first results with diode pumped Nd:GSGG amplifiers are shown.

TuB19
Laser Generation of Nd:GGG at 938 nm, Chunyu Zhang1, Chunqin Gao1, Ling Zhang1, Zhiyi Wei1, Zhiguo Zhang1; Inst. of Physics, Chinese Acad. of Sciences, China, 2Dept. of Opto-Electronics, Beijing Inst. of Technology, China. Continuous-wave (CW) laser from Nd:GGG operating at 938nm on quasi-three-level was reported. The maximum output power of 500 mW was obtained at the incident pump power of 5.3 W with a slope efficiency of 15%.

TuB20
Diode-Pumped Nd:GSGG Laser with 2.93 W Output Power at 942 nm, Ling Zhang, Chunyu Zhang, Zhiyi Wei, Zhiguo Zhang; Inst. of Physics, China. We demonstrated a diode-pumped Nd:GSGG laser at 942 nm. As much as 2.93 W output power of 942 nm was obtained with a slope efficiency of 16.6% at the incident pump power of 19.7 W.

TuB22
ZGP Mid-Infrared Laser Source Pumped by Nearly-Degenerate PPKTP Parametric Oscillator, Markus Henriksson1, Mikael Tihonen2, Valdas Pasiskievicius3, Fredrik Laurell1; 1FOI, Sweden, 2KTH, Sweden. A tandem OPO is reported where a Nd:YAG laser pumps a near-degenerate quasi phase-matched KTiOPO4 OPO with a volume Bragg grating output coupler. Both signal and idler are used to pump a single ZnGeP2 OPO.

TuB23
Efficient Diode-Pumped Er,Yb:YAlO3 Laser, Nikolai A. Tolstik1, Siarhei Kurilchik1, Victor Kisel1, Nikolai Kuleshov2, V. Maltsev2, O. Pilipenko1, E. Kroporulina1, Nikolai Leonov2; 1Inst. for Optical Materials and Technologies BNTU, Belarus, 2Moscow State Univ., Russian Federation. We report on the spectroscopic properties, CW and Q-switched laser operation of a diode-pumped Er,Yb:YAlO3 laser. CW output power of 250 mW with slope efficiency of 18.5% with respect to absorbed pump power was demonstrated.
TuB24

FeZnSe and ZnS Polycrystalline Passive Q-switching of 2.8 μm Er:Cr:YSGG Laser, Alan Martinez, Andrew R. Gallant, Patrick Marine, Vladimir Fedorov, Sergey Mirov, Valeri Badikov. Univ. of Alabama at Birmingham, USA. 8:00 a.m.

TuC

Nonlinear Optics

British Ballroom

TuC1 11:00 a.m. Invited

Periodically Poled Nonlinear Materials – Engineered for Applications and from Damage, Fredrik Laurell, Carlota Canalias, Junji Hiroshi, Shunshua Wang, Valdas Pasiskevicius, Roy Forsberg, Sweden. 11:00 a.m.

TuC2 11:30 a.m.

Control of Nonlinearity in Fiber CPA System by Pulse Shaping, Damian Schimpf, Doreen Müller, Steffen Hübner, Thomas Schreiber, Jens Limpert, Andreas Tünnermann. 11:30 a.m.

TuC3 11:45 a.m.

Diode-Pumped Nd:GdVO₃ Microchip Laser with a Single-Pass Green Generation in PPMgLN, Tsuyoshi Suzuki, Yasuhiro Sato, Masaki Hiroi, Hironobu Mifune, Yoichi Sato, Hideki Ishizuki, Takunori Taira, Osamu Nakamura, Shinya Watanabe, Yasunori Furukawa, RICOH Co., Ltd., Japan. 11:45 a.m.

TuC4 12:00 p.m.

Cavity-Dumped Intracavity Frequency Doubled Yb:YAG Thin Disk Laser at 100 kHz Repetition Rate, Christian Stolzenburg, Adolf Giesen, Frank Butze, Peter Heist, Günter Hollemann. 12:00 p.m.

TuC5 12:15 p.m.

3.4-μm ZGP RISTRA Nanosecond Optical Parametric Oscillator Pumped by a 2.05-μm Ho:YLF MOPA System, Alex Dergachev, Derrell Armstrong, Arlee Smith, Thomas E. Drake, Marc Dubois. Q-Peak, Inc., USA. 12:15 p.m.
WA2 • 8:30 a.m.

Generation of 66-fs 440 mW Average Power Pulses from a Diode Pumped Yb+ : CaGdAlO₃ Laser, Justine Boudé-Jeude1, Y. Zaatari1, Frederic Druon1, Marc Hanna1, Patrick Georges1, Johan Petit2, Philippe Golden1, Bruno Viana1; 1Lab Charles Fabry de l’Inst. d’Optique, France, 2Lab de Chimie Appliquée Etat Solide de l’Ecole Natl. Superieure de Chimie de Paris, France. We demonstrate the generation of 66-fs pulses with an average power of 440 mW from a diode-pumped Yb+ : CaGdAlO₃ modelocked laser. This represents the highest average power ever obtained for a sub-100 fs diode-pumped Yb bulk laser.

WA3 • 8:45 a.m.

58 fs Pulses from a Mode-Locked Yb:LuVO₄ Laser, Simon Rivier1, Xavier Mateos1, Junhao Liu1, Valentin Petrov1, Uwe Grieben1, Martin Zorn2, Markus Wegers2, Huaijin Zhang3, Jianguo Zhang3, Minhua Jiang3; 1Max-Born-Inst., Germany, 2Ferdinand-Braun-Inst., Germany, 3Shandong Univ., China. We report passive mode-locking of the ytterbium doped orthovanadate crystal Yb:LuVO₄ with a semiconductor saturable absorber, achieving pulses as short as 58 fs at 1036 nm for an average power of 85 mW.

WA4 • 9:00 a.m.

Passive Cavity Enhancement of a Femtosecond Fiber Chirped Pulse Amplification System to 204W Average Power, Ingmar Hartl1, M. E. Fermann1, Thomas R. Schibli1, D. D. Hudson1, M. J. Thorpe1, R. J. Jones1, J. Ye1; 1IMRA America, Inc., USA, 2ILS, Natl. Inst. of Standards and Technology and Univ. of Colorado, USA. An external passive cavity has been used to demonstrate more than 200-times enhancement of the 1-W-average-power Yb chirped mode-locked fiber-laser-system emitting ~120-fs pulses at 90-MHz repetition-rate. Peak intra-cavity intensities of >1012 W/cm² were achieved.

WA5 • 9:15 a.m.

54 W, 150 MHz, Passively Mode-Locked TEM00 Nd:YVO₄ Oscillator Pumped at 888 nm, Louis Mc Donagh1, Christian Theobald1, Markus Serr1, Richard Wallestein1, Ralf Knappe1, Achim Nebel1, 1Technische Univ. Kaiserslautern, Germany, 2Lumera Laser GmbH, Germany. We report on a passively mode-locked TEM00 Nd:YVO₄ oscillator providing 54 W of power at a repetition rate of 150 MHz, thanks to the high gain of Nd:YVO₄ and its optimized pumping at 888 nm.

WA6 • 9:30 a.m.

Self-Starting Femtosecond Cr⁺⁺:YAG Laser Mode Locked with a GaN NAs Saturable Bragg Reflector, Christopher G. Leburn1, Andreas D. McRobbie1, Alexander A. Lagatsky1, Christian T. A. Brown1, Wilson Sibbett1, Stephane Calvez2, David Burns1, Hanlong D. Sun1, Martin D. Dawson1, James A. Gupta1, Geoff C. Aers1; 1Univ. of Strathclyde, UK, 2Inst. of Photonics, Univ. of Strathclyde, UK, 3Inst. for Microstructural Sciences, Natl. Res. Council of Canada, Canada. We report the first demonstration of a passively mode-locked femtosecond Cr⁺⁺:YAG laser incorporating a GaN NAs saturable Bragg reflector to mode lock around 1500nm. 132fs pulses were generated with an output power of 140mW.

WA7 • 9:45 a.m.

Chirped-Mirror Dispersion Controlled Femtosecond Cr:ZnSe Laser, Irina T. Sorokin1, Evgenii Sorokin1; 1Photonics Inst., Austria. We report the first chirped-mirror dispersion controlled KLM Cr:ZnSe laser, using a SESAM for starting and generating nearly transform-limited 80 fs pulses at 80 mW output power at 180 MHz rep-rate at 2.4 μm.

WB • Poster Session III

Columbia Ballroom

WB1

Generation of Supercontinuum Bottle Beam Using an Axicon, JaHon Lin1, Hai-Hung Liang1, Wen-Feng Hsieh1, Ming-Dar Wei2, Kuei-Huei Liu3; 1Dept. of Photonics and Inst. of Electro-Optical Engineering, Natl. Chiao Tung Univ., Taiwan, 2Inst. of Optical Physics, Feng Chia Univ., Taiwan, 3Dept. of Science Education, Taipei Municipal Univ. of Education, Taiwan. Supercontinuum bottle beam produced by the axicon and focal lens can enhance the trapping ability. The position and diameters of the optical bottle are different for the selecting wavelength that consists with the theoretical prediction.

WB2

Laser Operation of Tm near 2 μm in the Disordered Double Tungstate Host NaGd(WO₄)₂, Mauricio Rico1, Xavier Mateos1, Junhao Liu1, Uwe Grieben1, Valentin Petrov1, Jose Maria Cano-Torres2, Maria Dolores Serrano2, Carlos Zalado2, Francisco Jose Valle2, Miguel Galan2, Gregorio Viera2; 1Max-Born-Inst., Germany, 2ICMM, Spain, 3Monocrom, Spain. Lasing with an output power up to 300 mW is reported for Tm:NaGd(WO₄)₂, both with Ti-sapphire and diode laser pumping. This disordered crystal grown by the Czochralski method allowed tuning from 1813 to 2025 nm.

WB3

Up-Conversion Processes Accompanying the 2.5 μm Oscillation in the RbPbCl₃:Pr³⁺ Crystal, Andrey G. Okhrimchuk1, Leonid N. Butvina1, Evgeniy M. Dianov3, Ninel V. Lichkova1, Vladimir Zavgorodnev1, Alexander V. Shestakov1; 1Fiber Optics Res. Ctr., RAS, Russian Federation, 2Inst. of Microelectronics Technology, RAS, Russian Federation, 3Elements of Laser Systems Co., Russian Federation. Up-conversion processes detrimental to oscillation on the ⁴F₅ - ⁴I₃ transition in RbPbCl₃:Pr³⁺ crystal is investigated in order to optimize the dopant ions concentration and the pump wavelength.

WB4

Single Frequency Ytterbium-Doped Fiber Laser with 26 nm Tuning Range, Martin Engelbrecht, Dieter Wandt, Dietmar Kracht; Laser Zentrum Hannover e.V., Germany. A core-pumped fiber-laser is presented, tunable from 1017 to 1043 nm, filtered by a grating pair. The free spectral range of 260 MHz ensures stable single frequency operation with a maximum output of 31 mW.

WB5

Miniature Lasers on the Basis of Yb:Sc₂O₅, Karsten Scholle1, Peter Fulhberg1, Tooman Güü1, Yury Kuzmi1nykh1, Klaus Petermann1, Günter Huber2; 1LISA Laser Products OHG, Germany, 2Inst. of Laser-Physics, Germany. Yb:Sc₂O₅ was investigated in a miniature plane-plane resonator and compared with Yb:YAG. A record slope efficiency around 80 % was measured with a 0.1 % Yb-doped 2.5 mm-rod.
WB6
CW Laser Emission around 900 nm along the $^{4}S_{3/2}$−$^{4}P_{3/2}$ Channel with New Nd-Doped Crystals, Cyrille Varona, Pascal Loiseau, Gérard Aka; CNRS UMR, France. CW laser emission around 900nm was demonstrated for Nd:CaWO$_4$ and Nd:SrLaGaO$_4$. For Nd:CaWO$_4$, more than 400mW output power at 914nm were measured for 2.2W of absorbed pump power, with an output coupling of 10%.

WB7
Actively Stabilised Single-Frequency Red VECSEL, Lynne G. Morton1, Hannah D. Foreman1, Jennifer E. Hastie1, Martin D. Dawson1, Erling Riis2; 1Inst. of Photonics, UK, 2Univ. of Strathclyde, UK. We report an actively stabilised single-frequency vertical external cavity surface emitting laser operating at 678nm with a 200kHz laser linewidth. More than 10mW of output power was achieved in single-frequency operation.

WB8
Tuning and Q-Switching Tm:Germanate Fiber Laser, Norman P. Barnes3, Brian M. Walsh3, Donald J. Reiche3, Shubin Jiang3; NASA Langley Res. Ctr., USA; 3NP Photonics, USA. Tm:germanate fiber lasers can tune between 1.88 and 2.04 μm, depending on the length. Optimized pulsed operation yielded thresholds of 62 mJ and slope efficiencies of 0.25, even with a low launch efficiency. Q-switching achieved.

WB9
Numerical Modeling of High Power Continuous-Wave Yb:YAG Thin Disk Lasers, Scaling to 14 kW, Jochen Speiser, Adolf Giesen; Inst. für Strahlwerkzeuge, Germany. A numerical model of the thin disk laser, including inversion, absorption, intracavity power density, temperature and ASE is presented. It is combined with FEM analysis to compute deformation, stress and thermal lensing.

WB10
Diode-Pumped Yb:YAG Ring Laser with High Beam Quality, Sadao Uemura, Kenji Torizuka; Natl. Inst. of Advanced Industrial Science and Technology, Japan. We developed a diode-pumped Yb:YAG ring laser with high beam quality only applying a highly doped Yb:YAG pumped directly into the upper lasing level. The laser produces a TEM00 beam. M^2 factor is 1.26.

WB11
Femtosecond Thin Disk Yb:KYW Regenerative Amplifier with Astigmatism Compensation, Mikhail Larionov4, Frank Butze5, Detlef Nickel5, Adolf Giesen2; Technologiegesellschaft für Strahlwerkzeuge mbH, Germany; 2Inst. für Strahlwerkzeuge, Germany. Pulses with an energy of 116 μJ and 250 fs pulse duration at a repetition rate of 40 kHz are demonstrated. Special technique is applied to compensate the astigmatism of the laser crystal.

WB12
Diode-Pumped Yb: LuSiO$_3$: Lasers, Yanrong Song6, Jianghai Hu6, Chengfeng Yan6, Guangjun Zhao6, Lianghui Su6, Jun Xie6, Kai Guo6, Zhigang Zhang6; College of Applied Sciences, Beijing Univ. of Technology, China. 6Shanghai Inst. of Optics and Fine Mechanics, China; 6Inst. of Quantum Electronics, China. Yb:LSO CW and Q-switched lasers pumped by diode lasers were demonstrated. Q-switched laser operated at 1058nm with InGaAs absorber. Pulse repetition was around 39kHz, slope efficiency of CW and Q-switched lasers were 22.2% and 3.0%.

WB13
Influence of Impurity and Energy Migrations on the Radiative and Non-Radiative Decay of Ytterbium-Doped Sesquioxide Ceramics, Jean-Francois Bisson, Dmitrii Kouznetsov, Ken-Ichi Ueda; Inst. for Laser Science, Japan. Data about fluorescence decay in ytterbium-doped sesquioxide ceramic materials are presented. The influence of impurities on quenching probability and the enhancement of the latter by the energy migrations are studied.

WB14
Effectiveness of Radial-Gain Tailoring in Large-Mode-Area Fiber Lasers and Amplifiers, John R. Marcian; Univ. of Rochester, USA. Analytic expressions are derived for modal discrimination in large-mode-area gain-tailored fibers. While Gaussian-like profiles result in increased modal discrimination, step-gain profiles smaller than the waveguide core offer the highest discrimination.

WB15
Characterization of Ytterbium-Doped Calcium Fluoride for Broadband Regenerative Pulse Amplification, Mathias Siebold, Axel Jochmann, Marco Hornung, Stefan Bock, Joachin Hein, Malte C. Kaluza, Sebastian Podleska, Ragnar Boedefeld; Inst. for Optics and Quantum Electronics, Germany. DPSSL-systems combined with CPA technique are promising devices for generation of highest peak intensities. We report on investigations of Yb:CaF$_2$ as broadband amplifying medium in a diode pumped regenerative amplifier for millijoule output.

WB16
Thermal Conductivities of Polycrystalline Nd$^{3+}$- and Yb$^{3+}$-Doped Y$_{2}$Al$_{2}$O$_{5}$: Ceramics, Yoichi Sato, Takunori Taira; Laser Res. Ctr. for Molecular Science, Inst. for Molecular Science, Japan. We have evaluated thermal conductivities (κ) in polycrystalline Nd$^{3+}$- and Yb$^{3+}$-doped YAG ceramics. The differences of κ of YAG between two types of ceramics and single crystals that have various RE$^{3+}$-concentrations were also discussed.

WB17
Ambient-Temperature 4-W Yb:YAG Ceramic Microchip Lasers at Both 1030 nm and 1049 nm, Jun Dong, Akira Shiraoka1, Ken-ichi Ueda1, Hideki Yagi1, Takagami Yanagihara1, Alexander A. Kaminskii1; 1Inst. for Laser Science, Unio. of Electro-Communications, Japan, 1Konoshima Chemical Co. Ltd., Japan; 1Inst. of Crystallography, Russian Acad. of Sciences, Russian Federation. Laser-diode end-pumped Yb:YAG ceramic microchip lasers with 4 W output power at 1.03 μm and 1.049 μm were obtained at ambient temperature. Slope efficiencies of 64%, 69% at 1049 nm and 1030 nm were achieved.
Potential of Fiber Raman Laser in Visible Wavelength Region, Yan Feng, Wolfgang Hackenberg, Domenico Bonaccini Calia; European Southern Observatory, Germany. We investigate the potential of fiber Raman lasers in the visible wavelength region, which have hardly been explored yet, motivated by developing a fiber based 589nm source for laser guide star adaptive optics.

Compact Continuous-Wave Yellow Laser Based on a Self-Stimulating Raman Nd:YVO₄ Laser, Takashige Omatsu, Andrew Lee, Peter Dekker, Helen M. Pink, James A. Piper; 1Chiba Univ., Japan, 2Macquarie Univ., Australia. We report 92mW CW yellow output from a small-scale, diode-pumped intracavity-doubled self-stimulating Raman Nd:YVO₄ laser with optical efficiency of 2.2%. We believe this to be the first report of a CW self-stimulating Raman yellow laser.

900 nm Emission of a Nd:ASL Laser Pumped by an Extended-Cavity Tapered Laser Diode, David Paboeuf, Gaëlle Lucas-Leclin, Patrick Georges, Bernulf Sumpf, Götz Erbert, Cyrille Varonat, Pascal Loiseau, Gérard Alaï, Bernard Ferrand; 1Inst. d’Optique, France, 2Ferdinand Braun Inst. für Höchstfrequenztechnik, Germany, 3ENSCP, France, 4CEA-LETI, France. We describe here the use of a 798-nm-stabilized high-brightness tapered laser diode to pump a Nd:ASL crystal for 900 nm laser operation. An output power of 150 mW is obtained.

Continuous-Wave and Mode-Locked Laser Operation of Yb:NaLu(WO₄)₂, Xavier Mateos, Simon Riviere, Uwe Griebner, Valentin Petrov, Xiaomei Han, Jose Maria Cano-Torres, Alberto Garcia-Cortés; 1Concepcion Cascales, 2Carlos Zaldo; 1Max-Born-Inst., Germany, 1ICMM-CSIC, Spain. Highly Yb-doped tetragonal crystals of NaLu(WO₄)₂ with disordered structure were synthesized with Na:W:O:R flux. Continuous-wave laser operation yielded an output power of 650 mW and 90-fs pulses were generated by passive mode-locking.

New Regularity of Multiphonon Relaxation in Rare Earth Doped Laser Crystals, Yarri V. Orlovskii, Tasoslan T. Basiev, Konstantin K. Pukhov; General Physics Inst. RAS, Russian Federation. Dependence of multiphonon relaxation rate of mid-IR transitions of rare-earth ions on the distance between a rare-earth ion and a nearest ligand in low phonon laser hosts with similar phonon spectra is considered.

Lasing of Yb⁺ in the Non-Centrosymmetric Host KGa₃(PO₄)₄, Isabel Parrezo, Maria Cinta Pujol, Magdalena Agudo, Francesc Díaz, Xavier Mateos, Valentin Petrov; 1Univ. Rovira i Virgili, Spain, 2Max-Born-Inst., Germany. Crystals of the self-doubling KGa₃(PO₄)₄ were grown with Yb-doping as high as 3.2×10²⁰ at/cm³. They were spectroscopically characterized and laser generation in the 1 μm range was achieved with a slope efficiency exceeding 55%.

Novel Technologies

British Ballroom
• 11:00 a.m. – 12:30 p.m.

2-Dimensional Waveguide Coherent Beam Combiner, Scott E. Christensen, Olivia Koski; Lockheed Martin Coherent Technologies, USA. We report on a novel 2-D coherent beam combiner with the potential to completely eliminate side-lobe power in the combined beam, without using vulnerable refractive or diffractive elements in the beam train, allowing high-power scaling.

High Brightness Semiconductor Lasers with Internal Gratings, Mark Osouski, Rob Lammert, Se Oh, C. Panja, Paul Rudy, Tom Stukelon, Jeffery Ungar; QPC Lasers, Inc., USA. We present recent advances in high power semiconductor lasers including increased spectral brightness using on-chip internal gratings, increased spatial brightness, and reduced cost architectures at wavelengths from the near infrared to the eye-safe regime.

Core-clad-type composite structures in Nd:GdVO₄ single crystals were directly fabricated by single-crystal-growth techniques. The double die EFG method enables 3-mm core of Nd:GdVO₄ inside 5-mm clad. Laser oscillation in our samples was successfully demonstrated.

Continuous-Wave and Q-Switched Operation in Nd:YAG Single-Crystal Fiber Grown by Micro-Pulling-Down, Julien Didierjean, Didier Perrodin, Marc Castaing, François Balembois, Kherreidane Lebbou, Alain Brenier, Patrick Georges, Jean-Marie Fourmigué, Olivier Tillement; 1Inst. d’Optique, France, 2Fibercrystal SAS, France, 1LPCL, Univ. Lyon, France. We present the first high power laser using single-crystal Nd:YAG fibers grown by micro-pulling-down technique, producing 10-W CW power and 370-kW peak power in Q-switched regime for 60-W of pump power.

11W Broadband Amplified Spontaneous Emission Fiber Source at 2 μm, DeYuan Shen, Lee Pearson, Jayanta Sahu, W. Andy Clarkson; Univ. of Southampton, UK. High-power operation of Tm-doped superfluorescent fiber source is described. Over 11W of single-ended output spanning the wavelength-range from 1940nm to 1976nm was obtained with a slope efficiency of 38% with respect to launched pump power.
First Demonstration of Neodymium True Three Level Laser Emitting at 879 nm, Emilie Hersault, François Balenbois, Patrick Georges; Lab Charles Fabry de l’Inst. d’Optique, France. We present the first true three-level-laser based on an Nd-doped crystal. Emission at 879-nm in Nd:GdVO₄ was studied in cw and pulsed regime. SHG was realized to reach blue range at 439.5-nm.

- 12:30 p.m. – 2:00 p.m.
 Lunch (on your own)

WD • High Power Solid-State Lasers II

British Ballroom

- 2:00 p.m. – 3:30 p.m.

WD • High Power Solid-State Lasers II

Takunori Taira; Laser Res. Ctr. for Molecular Science, Japan; Presider

WD1 • 2:00 p.m. Invited

Recent Progress and the Future of Ceramic Lasers, Ken-ichi Ueda; Univ. of Electro-Communications, Japan. Abstract unavailable.

WD2 • 2:30 p.m.

The Texas Petawatt Laser, Erhard W. Gaulı, Mikael Martinezı, Todd Ditmireı, Skyler Douglası, Watson Hendersonı, Joel Blakeneyı, John Cairdi, Erlandsonı, Igor Ivanovicı, Chris Ebbesi, Bill Molanderı; 1Univ. of Texas at Austin, USA, 2Laurence Livermore Natl. Lab, USA. We report on the 200 J, 150 fs Texas Petawatt Laser. A hybrid amplification with OPCPA in BBO and YCOB crystals and mixed glasses is used for broadband gain. Scalability to Exawatt lasers is discussed.

WD3 • 2:45 p.m.

Suppression of Optical Parametric Generation in the High-Efficient OPCPA System, Ildar A. Begishev, Vincent Bagnoud, Christophore Dorrer, Jonathan D. Zuegel; Lab for Laser Energetics, Univ. of Rochester, USA. An orbital tip of crystals and a higher level of a seed signal have significantly suppressed super-luminescent optical-parametric generation as the main limitation factor in high-efficient optical-parametric chirped-pulse amplifiers.

WD4 • 3:00 p.m.

The Mercury Project: A kW Scale Yb:S-FAP Laser for Inertial Fusion Energy and Target Experiments, Andy Bayramianı, Paul Armstrongı, Camille Bibeauı, John Cairdi, Rob Campbellı, Rick Crossı, Jay Dawsónı, Chris Ebbesiı, Al Erlandsonı, Barry Freitasi, Robert Kentı, Zhi Liaoı, Joe Menapacı, Bill Molanderı, Noel Petersonı, Kathleen Schaffersı, Nick Schenkeli, Steve Sizontı, John Tassanoı, Steve Telfordı, Everett Utterbackı, Mark Randleś, Bruce Chaiı, Yiting Feiı; 1Laurence Livermore Natl. Lab, USA, 2Northrop Grumman Space Technologies, Synoptics, USA, 3Crystal Photonics, Inc., USA. The laser is nearing completion with demonstration of 73% frequency-conversion efficiency, deformable mirror operation that generated a 4-times diffraction limited spot, and commissioning of an advanced front end to be installed on the main laser.

WD5 • 3:15 p.m.

Tabletop 300J Ins Nd:Glass Laser for Pumping of a Chirped Pulse Optical Parametric Amplifier, Anatoly K. Potomkin, Eugene V. Katin, Efim A. Khazanov, Alexey V. Kirsanov, Grigory A. Luchinin, Anatoly N. Mal’shakov, Michail A. Mart’yanov, Oleg V. Palashov, Andrey A. Shaq’kin; Inst. of Applied Physics, Russian Federation. 300J-energy Ins duration pulse has been achieved at the laser output with fill factor of 0.8. The laser has been accommodated on a single optical table. The energy efficiency of second harmonic generation is 55%.

Columbia Ballroom

- 3:30 p.m. – 4:00 p.m.
 Coffee Break & Exhibits

WE • Mid-IR Sources

British Ballroom

- 4:00 p.m. – 6:00 p.m.

WE • Mid-IR Sources

Gerard Aka; Ecole Natl. Superieure de Chimie de Paris, France; Presider

WE1 • 4:00 p.m.

Core Pumped Erbium Fiber Nanosecond Pulse Amplifier Generating 360 kW Peak Lower with M2<1.1 at 1545 nm Wavelength, Jayesh C. Jasapara, Mirt Andreiço, David DiGiovanni, Cliff Headley, Andrew D. Yablon; OFS Labs, USA. Nanosecond pulses are amplified in a single clad 875 μm² effective area Erbium doped fiber, core pumped at 1480 nm, to generate record 360 kW peak power with M²<1.1 at 1545 nm wavelength.

WE2 • 4:15 p.m.

Efficient Diffraction-Limited SLM Eyesafe 1617 nm Er:YAG MOPA with 1.1 ns Pulsewidth, Robert C. Stoneman, Ross Hartman, Eric A. Schneider, Charles G. Garvin, Sammy W. Henderson; Lockheed Martin Coherent Technologies, USA. We report an eyesafe diffraction-limited SLM Er:YAG MOPA with 1.1ns pulsewidth. The injection-seeded oscillator produces 2.1W output with 1.1 M² at 10kHz PRF. The amplifier produces 10W CW and 4.7W pulsed outputs.

WE3 • 4:30 p.m.

Tunable Laser Operation of Tm-Doped Epitaxial Layers of Monoclinic KLu(WO₄)₂ near 2-μm, Xavier Mateosı, Valentin Petrovı, Uwe Griehnerı, Oscar Silvestreı, Maria Cinta Pujoıı, Magdalena Aguillıı, Francesc Diazı; 1Max-Born-Inst., Germany, 2Univ. Rovira i Virgili, Spain. Epitaxial layers of Tm-doped KLu(WO₄)₂ grown on undoped KLu(WO₄)₂ substrates are longitudinally pumped by a Tsapphire laser at 802 nm and tunable (1894-2039 nm) laser operation is achieved with slope efficiencies as high as 64%.

WE4 • 4:45 p.m.

Efficient Single-Frequency Thulium Doped Fiber Laser near 2-μm, Jihong Gengı, Jianfeng Wuı, Shilin Jiangı, Jingrong Yuı; NP Photonics, USA, 2NASA Langley Res. Ctr., USA. We demonstrate highly efficient diode-pumped single-frequency fiber laser with 35% slope efficiency and 50mW output power operating near 2μm, which generated from a 2-cm long piece of highly Tm³⁺-doped germanate glass fiber pumped at 800nm.
Power-Scalable Thulium and Holmium Fibre Lasers Pumped by 793 nm Diode-Lasers, David G. Lancaster1, Alex Sabella1, Alex Hemming1, Shayne Bennetts1, Stuart D. Jackson1; 1Defence Science and Technology Organization, Australia, 2Optical Fibre and Technology Ctr., Australia. High-Power 793nm diode-laser pumped thulium and holmium double-clad fibre lasers are reported. The 112 W Tm3+ and 83 W Tm3+:Ho3+ lasers have slope-efficiencies of 53% and 42%, respectively, both with $M^2 < 1.5$.

Ultrabroad Tuning of an Intracavity-Pumped Cr2+:ZnSe Laser between 1880 and 3100 nm, Umit Demirbas, Alphan Sennaroglu; Koç Univ., Turkey. By using a Cr2+:ZnSe sample with reduced reabsorption losses and by employing intracavity pumping inside a 1570-nm KTP optical parametric oscillator, we demonstrated ultrabroad tuning of a gain-switched Cr2+:ZnSe laser between 1880 and 3100 nm.

Energy Scaling of Mid-Infrared Femtosecond Oscillators, Vladimir L. Kalashnikov, Evgeni Sorokin, Irina T. Sorokina; Photonics Inst., Austria. An analytical theory of chirped-pulse-oscillators mode-locked by SESAM is developed and applied to femtosecond Cr-chalcogenide lasers. The positive dispersion regime is shown to be significantly more promising for μJ-level pulse energies than the negative-dispersion regime.
Key to Authors and Presidens

Acco, Shy – MB6
Aers, Geof C. – WA6
Afanasiev, Denis M. – MB22
Aguiló, Magdalena – WB23, WE3
Aka, Gérard – MB18, TuB9, WB20, WB6, WE
Akahane, Yutaka – MC5
Akulov, Vladimir A. – MB22
Andrejco, Matt – WE1
Aoyama, Makoto – MC5
Arie, Ady – MB6
Armstrong, Darrell – TuC5
Armstrong, J. P. – MB1, WD4
Babin, Sergey A. – MB22
Bachor, Hans - A. – TuB10
Badikov, Valeri – TuB24
Bagnoud, Vincent – WD3
Bai, Yingxin – MB21
Balembois, François – MB24, WC4, WC6
Ballato, John – ME1
Barnes, Norman P. – WB8
Basiev, Tasoltan T. – SC277, WB22
Bass, Michael – ME1
Battle, Philip – TuB11
Bayramian, Andy – MB1, WD4
Beach, R. – MB1
Beck, Nicolas – MB4
Bedford, Robert – MD5
Begishev, Ildar A. – WD3
Bello Doua, Ramatou – ME4
Benedick, A. – WA1
Bennetts, Shayne – WE5
Bergquist, Jim – TuA2
Bethune, Donald S. – MB11
Betin, A. – MB21
Bibeau, Camille – WD4
Birge, J. – WA1
Bisson, Jean-François – WB13
Blakeney, Joel – WD2
Blau, Pinhas – MB6
Bock, Stefan – WB15
Boedefeld, Ragnar – WB15
Bonaccini Calia, Domenico – WB18
Boudelie, Justine – WA2
Brenier, Alain – WC4
Brown, Christian T.A. – WA6
Buchhave, Preben – TuB10
Buckley, Joel R. – ME5
Burgoyne, Bryan – TuB2
Burns, David – WA6
Butvina, Leonid N. – WB3
Butze, Frank – TuC4, WB11
Byer, Robert L. – MD3, TuA6, TuB15
Caird, John – WD2, WD4
Calvez, Stephane – WA6
Camargo, Fabiola A. – TuB16
Campbell, Rob – MB1, WD4
Canalias, Carlota – TuC1
Cano-Torres, Jose M. – WB2, WB21
Cascales, Concepcion – WB21
Castaing, Marc – MB24, WC4
Cha, Myoungsik – MB16
Chai, Bruce – WD4
Chang, Guoqing – ME2
Chen, Ying – ME1
Chong, Andy – ME5
Christensen, Scott E. – WC1
Churkin, Dmitriy V. – MB22
Clarkson, W.A. – WC5
Coddington, Ian R. – TuA2
Coic, Hervé – MB4
Coutts, David W. – MD6, TuB17
Cross, Rick – WD4
Dawes, Judith M. – TuB17
Dawson, Jay – MB1, WD4
Dawson, Martin D. – WA6, WB7
Deana, Alessandro – TuB21
Dekker, Peter – MD2, TuB17, WB19
Dawson, Martin T. – WA6, WB7
Di Teodoro, Fabio – WE8
Dianov, Evgeniy M. – MB17, WB3
Diaz, Francesc – WB23, WE3
Didams, Scott – TuA2
Didierjean, Julien – WC4
DiGiovanni, David – WE1
Digonnet, Michel J.F. – MD3
Ditmire, Todd – WD2
Dong, Jun – WB17
Dong, Liang – ME3
Dorrer, Christophe – WD3
Douglas, Skyler – WD2
Drake, Thomas E. – TuC5
Druon, Frederic – WA2
Dubinskii, Mark – MB5
Dubois, Marc – TuC5
Dvoiryin, Vladislav V. – MB17
Dziedzina, Markus – TuB18
Ebbers, Christopher A. – MA, MB1, WD2, WD4
Eichenholz, Jason – WA
Eichler, Hans J. – TuB18
Elder, Ian – MB3
Ell, R. – WA1
Engelbrecht, Martin – WB4
Erbert, Götze – WB20
Erlandson, Al – WD2, WD4
Fallahi, Mahmoud – MD5
Fan, Li – MD5
Fedorov, Vladimir – TuB24
Fei, Yiting – WD4
Feng, Yan – WB18
Fermann, Martin – SC276, WA4
Ferrand, Bernard – MB18, WB20
Foxman, Hannah D. – WB7
Fournigoué, Jean-Marie – WC4
Frede, Maik – MA5, MB19, MB20, ME6
Freiburgh, Peter – WB5
Fujii, Masaaki – MB8
Galan, Miguel – WB2
Gallian, Andrew R. – TuB24
Galvananskas, Almantas – ME2
Gao, Chunqing – TuB19
Garcia-Cortes, Alberto – WB21
Garvin, Charles G. – WE2
Gaul, Erhard W. – WD2
Geng, Jihong – WE4
Griebchner, Uwe – WA3, WB2, WB21, WE3
Grisard, Arnaud – MB13
Guertin, Doug – ME2
Gün, Teoman – WB5
Guo, Kai – WB12
Gupta, James A. – WA6
Hackenberg, Wolfgang – WB18
Hader, Jorg – MD5
Hädrich, Steffen – TuC2
Han, Xiumei – WB21
Hanna, Marc – WA2
Harb, Charles – TuB10
Hatamoto, Tetsumo – MC5
Hartke, René – TuB14
Hartl, Ingrmar – TuA, WA4
Hartman, Ross – WE2
Hartmann, Olivier – MB4
Hastie, Jennifer E. – WB7
Hayashi, S. – TuC7
Headley, Cliff – WE1
Hegele, Shrinkshina M. – TuB11
Hein, Joachim – WB15
Heist, Peter – TuC4
Yamakawa, Koichi – MC5
Yan, Chengfeng – WB12
Yanagitani, Takagimi – MB14, MB2, WB17
Yasuhiro, Ryō – MB14
Ye, J. – WA4
Yu, Jirong – MB21, MD, WE4

Zakharian, Aramais R. – MD5
Zaldo, Carlos – WB2, WB21
Zaouter, Y. – WA2
Zavgorodnev, Vladimir – WB3
Zayhowski, John J. – TuA5
Zelmon, David E. – TuB11
Zhang, Chunyu – TuB19, TuB20
Zhang, Huaijin – WA3
Zhang, Ling – TuB19, TuB20
Zhang, Zhiguo – TuB19, TuB20
Zhang, Zhigang – WB12
Zhao, Guangjun – WB12
Zong, Jie – MB10
Zorn, Martin – WA3
Zuegel, Jonathan D. – TuC6, WD3