Fall Vision Meeting, 2002

in cooperation with the Optical Society of America

Oct 24th – 27th, 2002

Palace of Fine Arts, San Francisco, CA, USA

Fall Vision Meeting (FVM) Abstracts were published in the Journal of Vision

http://www.journalofvision.org/2/10/

Overview

Immediately prior to the 2001 Optical Society of America Annual Meeting, the Vision and Color groups held a satellite meeting hosted by UC Irvine. The meeting was very successful, with much higher attendance than the Annual meeting.

The Smith-Kettlewell Eye Research Institute and UC Berkeley, School of Optometry are jointly sponsoring a expanded version of the fall vision meeting in cooperation with the Optical Society of America in San Francisco in October, 2002. The meeting will be held at the Palace of Fine Arts Lecture Theater, next to the Exploratorium interactive science museum.

This low-cost meeting incorporated the constituencies of the OSA Noninvasive Assessment topical meeting, and of the Vision, and Color groups from the OSA Annual Meeting, which decided not to participate in the Annual meeting in 2002. The meeting included the presentation of the Tillyer Lecture, in recognition of this longstanding award for excellence in vision science.

The meeting brought together those interested in quantitative visual science and those developing medical applications of this high-quality field in an appealing venue with extensive opportunities for cross-fertilization at the clinical/lab interface. The registration cost was low, and free for students. Accommodation costs are surprisingly low in this area of San Francisco, despite that fact that it is close to the Bay, the Yacht Harbor and the Golden Gate Bridge.
Fall Vision Meeting, 2002

in cooperation with the Optical Society of America

Oct 24th – 27th, 2002

Palace of Fine Arts, San Francisco, CA, USA

Basic Vision

Vision. Chair: Miguel Eckstein, Vice-Chair: Ione Fine

Studies of general visual processing, such as spatial, temporal, stereoscopic, texture and motion processing.

Color Vision. Chair: Vivianne Smith, Vice Chair: Mike Webster

The science of color processing by the human visual system, from retina to perception.

Clinical Vision

Noninvasive Assessment of Visual Disorders. Conference Chair: Marilyn Schneck, Vice Chair: Anthony Norcia

The development of noninvasive techniques to assess disorders and their treatment at all levels of the human visual system.

Visual Optics and Imaging. Conference Chair: Larry Thibos, Vice Chair: Craig Abbey

Studies of the optics of the eye and optical imaging of the visual system, together with and applications of knowledge of visual processing in medicine and industry.
Local Organizing Committee:

Christopher W. Tyler: cwt@ski.org (415) 345-2105

Anthony M. Norcia: amn@ski.org (415) 345-2052

Marilyn E. Schneck: mes@ski.org (510) 642-5904

Dennis M. Levi: dlevi@spectacle.berkeley.edu (510) 642-3414

Optical Society of America Liaison:

Andrew Stockman: a.stockman@ucl.ac.uk (+44) 20 7608 6914
The Fall Vision Meeting Meeting was held October 24-27, 2002, in San Francisco, CA in cooperation with the Optical Society of America. The meeting was organized by Christopher Tyler, with support from Smith-Kettlewell Eye Research Institute and the School of Optometry, University of California, Berkeley. The following are the abstracts of that meeting. ARVO holds the copyright to Journal of Vision, Vol. 2, No. 10, but not to the individual abstracts in that issue. ARVO has published these abstracts as a service to the vision science community.

1. Banks, Watt, & Ernst
 Screen cues to flatness affect 3D percepts

2. Ward
 A wide field, high dynamic range, stereographic viewer

3. Loomis
 Using immersive virtual reality to study visual space perception, visual control of locomotion, and visually-based navigation

4. Dagnelie
 Visual performance under simulated conditions of prosthetic vision

5. Thomas, Weerda, Vallines, & Greenlee
 Comparison of fMRI responses during discrimination under certainty and uncertainty conditions

6. Kontsevich & Tyler
 A single-channel model for spatio-temporal contrast sensitivity at low-to-medium spatial frequencies

7. Wichmann
 Modelling contrast transfer in spatial vision

8. Cohn
 Of icebergs and spike codes: Titanic theories?

9. Sun, Lee, White, & Swanson
 Examination of mechanisms underlying the frequency-doubling illusion

10. Baldassi & Verghese
 Effects of spatial and feature cues on the tuning function for orientation and location

11. Boynton & Duncan
 Visual acuity correlates with cortical magnification factors in human V1

12. Engel
 FMRI measurements of changes in color and orientation tuning in V1

13. Heeger
 Neuronal correlates of contrast detection and discrimination
<table>
<thead>
<tr>
<th></th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Lee</td>
<td>How ganglion cells code luminance and chromatic information in natural environments</td>
</tr>
<tr>
<td>15</td>
<td>MacLeod</td>
<td>Color discrimination, color constancy and natural scene statistics</td>
</tr>
<tr>
<td>16</td>
<td>Endrikhovski</td>
<td>A computational model of color categorization based on statistics of natural images</td>
</tr>
<tr>
<td>17</td>
<td>Lappin & Tadin</td>
<td>Spatial and temporal limits in discriminating motion energy</td>
</tr>
<tr>
<td>18</td>
<td>Cantor & Schor</td>
<td>The flash-lag effect in moving vernier</td>
</tr>
<tr>
<td>19</td>
<td>Poggel, Kasten, Strasburger, & Sabel</td>
<td>Residual vision enhanced by visuo-spatial cueing: Attention effects on diagnosis and training of visual field defects in brain-lesioned patients</td>
</tr>
<tr>
<td>20</td>
<td>Mulligan & Stevenson</td>
<td>Speed-dependent delays for smooth eye movements</td>
</tr>
<tr>
<td>21</td>
<td>Murray, Beutter, Eckstein, & Stone</td>
<td>Saccadic targeting during visual search for letters</td>
</tr>
<tr>
<td>22</td>
<td>Yang</td>
<td>Visual countermanding paradigm: How demanding is it to generate a stop signal for eye movements using visual cues?</td>
</tr>
<tr>
<td>23</td>
<td>Rudd & Zemach</td>
<td>A quantitative model of achromatic color induction based on separate lightness and darkness filling-in processes</td>
</tr>
<tr>
<td>24</td>
<td>Chen & Tyler</td>
<td>Lateral masking with chromoluminance patterns</td>
</tr>
<tr>
<td>25</td>
<td>Davis & De Valois</td>
<td>Measuring the role of chromatic saturation and luminance contrast in color spreading using hue cancellation</td>
</tr>
<tr>
<td>26</td>
<td>Shevell & Cao</td>
<td>Temporal nulling of chromatic assimilation</td>
</tr>
<tr>
<td>27</td>
<td>Monnier & Shevell</td>
<td>$s=S/(L+M)$ color shifts modulated by $I=L/(L+M)$ contrast within patterned backgrounds</td>
</tr>
<tr>
<td>28</td>
<td>Bimler & Kirkland</td>
<td>Sex differences in color vision and the salience of color-space axes</td>
</tr>
<tr>
<td>29</td>
<td>Calver, Radhakrishnan, Pardhan, & OLeary</td>
<td>The effect of spherical aberration in myopic and non-myopic eyes: developing an optical model</td>
</tr>
<tr>
<td>30</td>
<td>Davies & Morland</td>
<td>Chromatic and achromatic spectral sensitivity in diabetes mellitus</td>
</tr>
<tr>
<td>31</td>
<td>Delahunt, Webster, Ma, & Werner</td>
<td>A long-term chromatic adaptation mechanism</td>
</tr>
<tr>
<td>32</td>
<td>Malikc, Kay, & Webster</td>
<td>Individual differences in unique and binary hues</td>
</tr>
<tr>
<td>33</td>
<td>Mizokami, Werner, Crognale, & Webster</td>
<td>Color appearance and spectral bandwidth</td>
</tr>
<tr>
<td>34</td>
<td>Hirayama & Shinomori</td>
<td>Spatial frequency dependence of the luminous impulse response</td>
</tr>
<tr>
<td>Page</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>35</td>
<td>Hong & Shevell</td>
<td>Brightness induction with patterned backgrounds</td>
</tr>
<tr>
<td>36</td>
<td>Lott, Haegerstrom-Portnoy, Schneck, & Brabyn</td>
<td>Reading performance in older adults: The SKI study</td>
</tr>
<tr>
<td>37</td>
<td>Schneck, Haegerstrom-Portnoy, Lott, & Brabyn</td>
<td>Predicting declines in vision and vision performance in older individuals</td>
</tr>
<tr>
<td>38</td>
<td>Fine</td>
<td>Reading eye movements in older adults</td>
</tr>
<tr>
<td>39</td>
<td>Sakai, Kannon, Hirata, & Usui</td>
<td>Influence of the eye refraction on the luminance-pupil diameter relationship</td>
</tr>
<tr>
<td>40</td>
<td>Shinomori & Werner</td>
<td>The impulse response of an S-cone pathway</td>
</tr>
<tr>
<td>41</td>
<td>Thibos, Bradley, & Applegate</td>
<td>Where is the far-point in aberrated eyes?</td>
</tr>
<tr>
<td>42</td>
<td>Tran, Kuo, & Wildsoet</td>
<td>The interacting effects of form-deprivation and myopic defocus imposed locally on the central and peripheral retina in chick eyes</td>
</tr>
<tr>
<td>43</td>
<td>Yew, Chan, & Wildsoet</td>
<td>Negative 30 D lenses behave like occluders in inducing myopia in young chicks</td>
</tr>
<tr>
<td>44</td>
<td>Kay</td>
<td>Color categories are not arbitrary</td>
</tr>
<tr>
<td>45</td>
<td>D'Zmura</td>
<td>Color scission and transparency</td>
</tr>
<tr>
<td>46</td>
<td>Morland & Hoffmann</td>
<td>Retinotopic organisation of the visual cortex in human albinism</td>
</tr>
<tr>
<td>47</td>
<td>Kiorpes & Movshon</td>
<td>Extended developmental time course for global visual functions in primates</td>
</tr>
<tr>
<td>48</td>
<td>Dobson, Miller, Harvey, & Mohan</td>
<td>Amblyopia in astigmatic preschool children</td>
</tr>
<tr>
<td>49</td>
<td>Lawton</td>
<td>Reading performance by dyslexics was improved by brief practice on a movement discrimination task, but not improved with a word discrimination task</td>
</tr>
<tr>
<td>50</td>
<td>Chien & Bronson-Castain</td>
<td>Lightness constancy in 4-month-old infants: With and without a white anchoring point cue</td>
</tr>
<tr>
<td>51</td>
<td>Good, Hou, & Norcia</td>
<td>Sweep VEP vernier acuity for the detection of amblyopia</td>
</tr>
<tr>
<td>52</td>
<td>Eskew, Wang, & Giulianini</td>
<td>Spectral asymmetries in detection mechanisms fed by S cone increments and decrements</td>
</tr>
<tr>
<td>53</td>
<td>Dobkins & Gunther</td>
<td>Chromatic Contrast Sensitivity is Constrained by the Relative Number of L- vs. M- cones in the Eye</td>
</tr>
<tr>
<td>54</td>
<td>Smithson & Pokorny</td>
<td>Psychophysical assessment of the L:M weighting of inputs to the ON and OFF S-cone pathways</td>
</tr>
<tr>
<td>55</td>
<td>Miyahara, Szewczyk, & Holloway</td>
<td>Unique hues, Rayleigh match, and favorite colors: Why do we see different colors than others?</td>
</tr>
</tbody>
</table>
56 Angel, Randell, Volbrecht, & Nerger
The effect of rods on perceptive field sizes at 10 degrees eccentricity in the four retinal quadrants

57 Thomas & Buck
Generality of rod hue biases

58 Gallant
Contextual effects in V1 and V4 during natural vision

59 Stoner
Contextual influences of shadows on motion interpretation

60 Albright
Why do things look as they do?: Contextual influences on visual processing

61 Nagy
Color mechanisms and attention in search tasks

62 Gegenfurtner
Color vision and motor control

63 Switkes
Integration of differing chromaticities in early and midlevel spatial vision

64 De Valois, Takeuchi, & Hardy
The role of color in luminance motion analysis

65 Henry
Field studies of color perception in the natural environment

66 Fine, MacLeod, & Boynton
Surface segmentation based on the luminance and color statistics of natural scenes

67 Chen & Cicerone
A new color vision test based on color from motion

68 Shady, MacLeod, Fisher, & Liang
Adaptation from invisible luminance and chromatic flicker

69 Simmons
Stereopsis at red-green isoluminance: Chasing the luminance artifacts

70 Krauskopf & Forte
Independent chromatic and luminance mechanisms for stereo depth?

71 Glaser, Kumar, & Zelano
Stereo depth using excitable neuronal arrays

72 Tyler, Likova, & Baseler
Principles of surface reconstruction

73 van Ee
Voluntarily controlled percepts, will-power, and conscious vision

74 McKee, Vergheze, & Farell
Edges and gratings: Interactions between 1st and 2nd order stereo systems

75 Stevenson
Disparity vergence responses to luminance and contrast-defined patterns

76 Sperling
Intertwined mechanisms of motion perception and attention

77 Usui
VISIOME Environment: Web based platform on vision science

78 Shokhirev
Simulation of population activity induced by moving stimuli in the mammalian primary visual cortex

79 Disch, Takeuchi, & De Valois
Apparent speed of cycloidal motions
<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>Ellis & Adelstein</td>
<td>Use of kinesthetic cues for cross modal transfer of movement coordinate information or "Why the left hand tells the right hand what it is doing"</td>
</tr>
<tr>
<td>81</td>
<td>Turano, Eisinger, Chaudhury, Hicks, & Chivukula</td>
<td>Sex differences in the influence of context on spatial localization revealed in open-loop walking</td>
</tr>
<tr>
<td>82</td>
<td>Howard & Duke</td>
<td>Depth from monocular transparency</td>
</tr>
<tr>
<td>83</td>
<td>Likova & Tyler</td>
<td>Spatiotemporal relationships in a dynamic scene: Position interruption and transient synchronization in stereomotion induction</td>
</tr>
<tr>
<td>84</td>
<td>Mirabella & Norcia</td>
<td>Neural correlates of Kaniza's polarized gamma motion</td>
</tr>
<tr>
<td>85</td>
<td>Chakor, Bertone, Faubert, McKerral, & Lachapelle</td>
<td>Do more complex stimuli require more processing time?</td>
</tr>
<tr>
<td>86</td>
<td>Lachapelle, Ruf Lange, Brulé, Racine, Dumont, & Casanova</td>
<td>The human photopic ERG luminance-response function: Analysis, interpretation and application</td>
</tr>
<tr>
<td>87</td>
<td>Fulton</td>
<td>Rod photoreceptor processes in pediatric disorders</td>
</tr>
<tr>
<td>88</td>
<td>Pei, Bonneh, Sampath, Hou, & Norcia</td>
<td>Texture detection in infants</td>
</tr>
<tr>
<td>89</td>
<td>Norcia & Hou</td>
<td>Non-linear analysis of the contrast paradox for vernier acuity</td>
</tr>
<tr>
<td>90</td>
<td>Peterzell & Werner</td>
<td>Rod spatial channels and adult aging: Implications for analysis of development of infant spatial vision</td>
</tr>
<tr>
<td>91</td>
<td>Wang</td>
<td>The effect of undersampling, irregular sampling and parafoveal scotomas on shape discrimination</td>
</tr>
<tr>
<td>92</td>
<td>Westall, Morong, Buncic, & Logan</td>
<td>Importance of baseline for electrophysiology assessment of drug induced changes in children with seizures.</td>
</tr>
<tr>
<td>93</td>
<td>Morong, Westall, Buncic, Snead, Logan, & Weiss</td>
<td>Sweep visual evoked potentials in infants with infantile spasms before and during vigabatrin treatment</td>
</tr>
<tr>
<td>94</td>
<td>Hood</td>
<td>Multifocal ERGs and VEPs: Noninvasive studies of the electrical activity of the human visual pathway</td>
</tr>
<tr>
<td>95</td>
<td>MacKeben</td>
<td>Kinesththetic feedback augments self-exploration of the visual field after central vision loss</td>
</tr>
<tr>
<td>96</td>
<td>Demirel, Takahashi, & Johnson</td>
<td>A comparison of visual field indices for standard FDT and a spatially finer testing pattern</td>
</tr>
<tr>
<td>97</td>
<td>Tzekov, Gerth, & Werner</td>
<td>Localized functional age-related changes in the central retina assessed by multifocal ERG</td>
</tr>
<tr>
<td>98</td>
<td>Swanson & Pan</td>
<td>A neural model of perimetry in glaucoma</td>
</tr>
</tbody>
</table>
Porciatti & Ventura

Screening for glaucoma with a user-friendly paradigm for the PERG called PERGLA.

Johnson, Takahashi, & Demirel

The ability of frequency doubling technology (FDT) perimetry to predict the onset of glaucomatous visual field loss for standard automated perimetry (SAP).

Movshon, Cavanaugh, & Bair

The role of horizontal intracortical connections in "long-range" spatial interactions.

Varadharajan & Foley

Effect of flanking patterns on contrast discrimination at different eccentricities.

Xing & Heeger

Spatial interactions are different at threshold and suprathreshold contrasts.

Olzak, Clark, & Laurinen

The role of a gap in contextual effects on discrimination performance.

McCourt & Blakeslee

Spatial frequency influences on brightness in White's effect and the checkerboard illusion.

Zemach & Rudd

Blocking of achromatic color induction signals by borders of different contrast polarities.

Birch & Hood

The full-field ERG as an outcome measure for treatment trials in hereditary retinal diseases.

Alexander & Levine

Temporal frequency characteristics of period doubling in the cone flicker ERG.

McLellan

Wave aberrations protect the eye against chromatic blur.

Klein

Specifying wavefront aberrations for clinical applications: Beyond Zernikes.

Campbell, Kisilak, Hunter, Bueno, King, & Irving

Optical aberrations of the eye and eye growth: Why aberrations may be important to understanding refractive error development.

Fortune

Local functional losses upstream from focal intraretinal laser axotomy in macaque retina.

Hamer, Nicholas, Tranchina, & Liebman

On the reproducibility of single photon responses (SPRs): the gordian knot of rod phototransduction perseveres.

Gerth, Shinomori, Sutter, & Werner

The impulse response of the aging visual system: Comparison of psychophysical and electrophysiological data.

Han, Bearse, Schneck, Adams, Barez, & Jacobsen

Comparison of multifocal electroretinogram (mfERG) measurement techniques to detect diabetic retinopathy.

Marmor

Clinical electrophysiology and the changing definition of central serous chorioretinopathy.

Bearse, Han, Schneck, & Adams

Mapping retinal dysfunction in diabetics using the slow flash multifocal electroretinogram.
Marmor Failing visual acuity and the late style of Edgar Degas: An optical blur analysis

Atchison, Marcos, & Scott Visual acuity, contrast sensitivity, and phase transfer function depend on the Stiles Crawford peak location

Miller, Sherrill, Harvey, & Dobson The stability of astigmatism in native american preschool children

Cheng, Himebaugh, Kollbaum, Thibos, & Bradley Validation of a clinical aberrometer

Kollbaum, Cheng, Himebaugh, Thibos, & Bradley Stability of clinical aberrometry measurements

Vilupuru, Roorda, & Glasser Changes in ocular aberrations during accommodation in rhesus monkeys

Abbey, Shimozaki, Baydush, Catarious, Floyd, & Eckstein Classification images for the detection of a simulated mass in mammographic images

Carney, Hill, & Chen W4M – A tool to simplify psychophysical research

Ernst & Banks Using visual and haptic information for discriminating objects

Pelz, Canosa, & Babcock Perceptual strategies in complex, extended tasks

Kaping, Duhamel, & Webster Adaptation to natural facial categories

Neumann & Gegenfurtner Perception based image retrieval

Hou & Norcia Neural correlates of shape-from-shading

Kumar, Jonkers, & Glaser Visual texture perception: Differences and similarities among human observers

Li & Levi Mechanisms of perceptual learning for vernier acuity

Liu & White A computational model for discrimination of even and random textures

Massof, Brown, Shapiro, Barnett, & Baker Having your cake and eating it too: Wide field of view and high resolution VR

Petrov & Popple Effects of negative afterimages in visual illusions

Popple, Levi, & Klein Popout templates in amblyopic observers vary with eye-of-origin

Scharff & Ahumada Using letter identifiability to predict readability of transparent text on textured background

Shimozaki, Eckstein, & Abbey Uncertain humans in a structurally certain world: attentional leaking with 100% valid postcues as seen by classification images

Toyofuku & Klein Internal and external noise contributions to classification templates: A double pass analysis