The Last Yard: Optical Fiber for Next Generation Digital A/V Cables

Devang Parekh
Agenda

• Audiovisual Bandwidth Demands
• Current Standards
• Tradeoffs
• Optical Technologies
• Conclusion
Agenda

• Audiovisual Bandwidth Demands
• Current Standards
• Tradeoffs
• Optical Technologies
• Conclusion
Display Size Increasing

Bigger Displays -> Higher Resolutions
Resolutions Increasing

8K - UHDTV
7680x4320

4K
3840 x 2160

2K - HD
1920x1080
Current Resolutions (1080p)

- 48-bit
- 36-bit
- 24-bit

Frame Rate (Hz) vs. Raw Data Rate (Gbps)
4K Resolution (2160p)

- 48-bit
- 36-bit
- 24-bit

Frame Rate (Hz)

Raw Data Rate (Gbps)
Copper is Slow!

![Bar chart showing bandwidth comparison between different Ethernet cables: Cat 5, Cat 6, Cat 6A, Cat 7, Cat 7A. Cat 7A has the highest bandwidth, followed by Cat 7, then Cat 6A, Cat 6, and Cat 5.]
Copper is Power Hungry!

- 10GBase-SR
- 10GBase-T (28 nm)
- 10GBase-T (40 nm)

Power (mW)

- Copper is Power Hungry! (5400 mW)
- 10GBase-SR (2000 mW)
- 10GBase-T (28 nm) (3000 mW)
- 10GBase-T (40 nm) (5000 mW)
Agenda

• Audiovisual Bandwidth Demands
• **Current Standards**
• Tradeoffs
• Optical Technologies
• Conclusion
HDMI

• HDMI (High Definition Multimedia Interface)
 – Consortium
 – Latest Version: 1.4b
 – Maximum Supported Resolution: 4096x2160p@24 fps

• Channels
 – 3 TMDS (Transition Minimized Differential Signaling) data
 – 1 TMDS clock
 – DDC (I^2C)
 – 5V

• Data Rate
 – 3.4 Gbps/data channel
 – Total: 10.2 Gb/s

• Ethernet (HEAC) and Audio Return Channel (ARC)
HDMI

- Limitations
 - 3.4 Gb/s over copper is lossy
 - DDC is limited to short distances

- HDMI 2.0
 - Projected: 18 Gb/s Aggregate

- Multiple Form Factors
 - Regular (Type A)
 - Mini (Type C)
 - Micro (Type D)
DisplayPort/Thunderbolt
DisplayPort/Thunderbolt

• Displayport
 – Video Electronics Standards Association (VESA)
 – Latest Version: 1.2

• Channels
 – 4 differential pairs for data
 – Bidirectional AUX channel
 – 3.3 V

• Data Rate
 – 5.4 Gbps/data channel
 – Total: 21.6 Gb/s
DisplayPort/Thunderbolt

- Thunderbolt
 - Apple/Intel
 - Serial Interface for DisplayPort and PCIe
 - Originally Light Peak (optical medium)
 - Latest Version: 2.0

- Channels
 - 2 Differential channels each way - Bidirectional
 - Power

- Data Rate
 - 10 Gbps/data channel
 - Total: 20 Gb/s
HDBaseT

- HDBaseT
 - Valens, Samsung, LG, Sony Pictures Ent.
 - Single Chip – Multiplex/Demultiplex
 - 5play (HDMI, Audio, 100 Mb Ethernet, Power, Control)
 - Latest Version: 2.0

- Channels
 - Cat 5e/6 (100 m)

- Data Rate
 - Pulse Amplitude Modulation (16-level)
 - 10.2 Gb/s (up to 20 Gb/s)
Agenda

• Audiovisual Bandwidth Demands
• Current Standards
• **Tradeoffs**
• Optical Technologies
• Conclusion
What Exists Today?

- Copper cabling
 - Low Cost
 - Short distances
- Extenders
 - Boxes (Tx/Rx for each side if Bidirectional)
 - Simple Interface
 - Convert Format
Electronic Equalization

• Compensate attenuation of signal
• Accepted for all solutions
 – Especially ones that use advanced modulation
• Requires extra IC for some applications
• Available on market
Unidirectional vs. Bidirectional

• Unidirectional
 – Lower Cost
 – Covers most applications

• Bidirectional
 – 1 for 1 replacement for copper
 – Ease of installation
Way Ahead

• Copper will dominate short distance cabling still for some time (5+ Years)
• Better solution needed for higher data rate applications and longer distances
• No clear one size fits all solution
Agenda

• Audiovisual Bandwidth Demands
• Current Standards
• Tradeoffs
• Optical Technologies
• Conclusion
A View from the Bottom

• Merchant Market
 – Datacom Suppliers
 – Low Cost

• High Volume Manufacturing
 – Quick Turn
 – Same platform, different standards
Datacenter Optics
Fiber Choices

• Multimode Fiber
 – Glass
 • OM(x)
 – Different grades of MM fiber
 – OM2 and higher for most applications
 • Ribbon/Parallel
 – Simplifies packaging
 – Plastic
 • Easy coupling
 • Robust
Fiber Choices

• Singlemode Fiber
 – Longer distance (> 2 km)
 – Cheaper than multimode
 – Higher cost for TX+RX
Integrated Circuits (i.e. Chips)

- **Datacom**
 - Designed for Ethernet
 - Multiple vendors
 - Laser Driver
 - 4x10G ICs (mass production)
 - 4x25G ICs (sampling)
 - Receiver (TIA)
 - Same as Laser Driver

- **Different IC, Different Standard**
 - IC changes
 - Optics stays the same
 - One platform
Integrated Circuits (i.e. Chips)

• Current Issues
 – AV != Ethernet
 • Different format
 • Less complicated control
 • Lower power point
 • Lower cost point
 – Small Market
Laser Choices

• Multimode Fiber
 – Vertical Cavity Surface Emitting Laser (VCSEL)
 – Low cost
 – Low power

• Singlemode Fiber
 – Edge Emitting Laser
 – High Cost – alignment is difficult
Hybrid Optical/Copper Cable

• Combine Fiber and Copper in cable
 – Fiber for high speed data
 • Reduces power consumption
 • Extends Reach
 – Copper for low speed control
 • Reduces complexity of IC – no multiplexing
 • Lower cost
Hybrid Optical/Copper Cable

• Form factor
 – Fit IC and optics inside connector shell
 – Look and feel of copper cabling

• Power
 – Scale with Moore’s law
 – USB (5V, >500 mA)
Hybrid vs. Copper Cable

• Pros
 – Higher bandwidth
 – Longer distance

• Cons
 – Higher cost
 – Lower reliability
Hybrid Cable vs. Extender

• Pros
 – Smaller footprint
 – Lower cost

• Cons
 – Format conversions
 – Can’t use installed cabling infrastructure
Conclusion

• Audiovisual data rate approaching Datacom
• Current copper solutions are not ideal
• Hybrid fiber/copper cable can alleviate
THANK YOU!