February 2014

Rydberg Atoms: Two’s Company, Three’s Still Company

By David Norris | Posted: 28 February 2014

Once relegated to the margins of atomic physics research as basically tunable microwave antennas (albeit with enviable success), highly excited “Rydberg” atomic states have experienced a resurgence of interest in the past decade at the hands of the quantum information community, owing to their giant polarizability and long natural lifetime.  In particular, the strong long-range interactions between excited Rydberg atoms can give rise to a “blockade” effect, in which one optically excited Rydberg atom inhibits the excitation of its neighbors, paving the way for new developments in such fields as single-photon nonlinear optics, quantum networks, and novel many-body quantum states.  

Read the full post


How to fit a laser-scanning microscope into a 2mm diameter tube

By Kyle Quinn | Posted: 28 February 2014

Optical microscopy can provide high-resolution images of cellular morphology and matrix organization, which can be utilized to diagnose disease or trauma. However, achieving an adequate signal-to-noise ratio at imaging depths exceeding 1mm is very challenging.  As a result, the initial clinical applications for optical microscopy techniques have largely focused on skin pathology.  One approach to unlocking a wider spectrum of clinical applications for biomedical optics is miniaturizing the distal end of microscopes into endoscopic probes.

Read the full post


Pushing the limits of imaging resolution and penetration depth

By Kyle Quinn | Posted: 28 February 2014

The development of labeling techniques capable of providing customizable molecular specificity has made optical microscopy a fundamental technique in the biomedical research, and the standard compound microscope remains a fixture in just about any clinic or biomedical lab. The popularity of optical microscopy was also driven by the ability to provide resolution at the cellular level that traditional clinical imaging modalities (e.g. ultrasound, x-ray CT, and MRI) simply cannot meet. The finer structural details of biological tissues were further elucidated through the development of transmission electron microscopy, which enabled unparalleled views at the scale of proteins and molecules. However, like all imaging technologies, there is a tradeoff between imaging resolution and penetration depth, and electron microscopy has extremely limited penetration depth.

Read the full post


It takes blood, sweat, and SERS to image single cells

By Ken Tichauer | Posted: 20 February 2014

Throw out those old dusty fluorescent molecules and welcome in the next generation of optical contrast agents. SERS (Surface Enhanced Raman Scattering/Spectroscopy) nanoparticles are sophisticated new contrast agents that offer some distinct advantages over conventional fluorescent molecules for investigating molecular biology.

Read the full post


Will the future be crowd-sourced? Open Source Appropriate Technology

By Arti Agrawal | Posted: 19 February 2014

I recently came across an article on Open Source Appropriate Technology (OSAT). How did I never think of this myself? Why have I never heard or read about it before? OSAT is all about developing technology in an open source environment (similar to Free and Open Source Software – or FOSS) keeping in mind the social, economic, political, environmental, ethical and cultural needs of the society for which it is developed. What this really translates to is developing technology that is.

Read the full post


Where would biomedicine be without optics?

By Kyle Quinn | Posted: 10 February 2014

Much of the emphasis in biomedical optics research has been placed on the clinical translation of our technologies -- and rightfully so!  As my fellow blogger Dr. Ken Tichauer indicates, the potential impact in the clinic is great and the future remains bright.  But as we gear up for OSA BIOMED 2014 in Miami, I will be excited to learn about some of the latest applications in basic science research where biomedical optics continues to play a key role. The field of optics has provided researchers advanced tools that are needed in a variety of other disciplines to optimize complex laboratory protocols, to elucidate the underlying mechanisms of disease, and to speed the preclinical development of novel therapies. Optogenetics






















 

Read the full post


Quantum Information Goes Splat on Causality's Windshield

By David Norris | Posted: 6 February 2014

Physicists sleep well at night comforted in the fact that information can’t travel faster than light, but determining where exactly the causality police write the speeding ticket in various systems can be tricky to pin down.  In an invited talk at QIM 2014, my colleague Paul Lett from NIST and the Joint Quantum Institute will present new measurements showing just how this speed limit is enforced for information contained in bipartite quantum entangled states, despite superluminal arrival of correlations shared between the two parts.

Read the full post


Photoimmunotherapy (PIT) busts open the doors for drug delivery

By Ken Tichauer | Posted: 6 February 2014

Over the last decade alone, it is estimated that over $200 billion has been spent just by governments to fund cancer research [1]. Despite this enormous investment, the recently released 2014 World Heath Organization (WHO) Cancer Report suggests that cancer incidence rates and deaths from cancer are on the rise, both in more developed and less developed nations.

Read the full post