Optical Interference Coatings (OIC)

Topic Categories

1. Deposition Process Technologies
2. Applications
3. Coating and Substrate Materials
4. Characterization and Properties of Coatings
5. Design of Coatings

1. Deposition Process Technologies
  •     Process control, monitoring, and automation
  •     Low and high energy deposition techniques
  •     Industrial sputtered metal and dielectric coatings
  •     Pulsed deposition processes
  •     Novel deposition methods
  •     Substrate cleaning, coating post-treatment techniques and contamination

2. Applications

  •     Coatings for solar utilization, environmental control, energy management
  •     Coatings for nanostructures and photonic crystals
  •     Coatings for Micro-Opto-Electro-Mechanical-Systems (MOEMS)
  •     Coatings for displays and lighting applications
  •     Coatings for biological and medical applications
  •     Coatings for astronomical, space, aerospace, and defence applications
  •     Coatings for short wavelengths EUV, XUV, UV
  •     Coatings for visible wavelengths
  •     Coatings for near and far IR spectral regions
  •     Coatings for polarization management
  •     Coatings for security and decorative applications
  •     Coatings for telecommunication components
  •     Coatings for ophthalmology
  •     Coatings on plastics and flexible substrates
  •     Coatings for automotive applications
  •     Coatings for extreme light and lasers
  •     Coatings for novel advanced applications

3. Coating and Substrate Materials

  •     Smart materials (nonlinear, electrochromic, electroluminescent, metamaterial, etc.)
  •     Organic coatings
  •     Metal coatings
  •     Transparent conductive coatings
  •     Composite material coatings
  •     Unusual coating and substrate materials, nanostructures

4. Characterization and Properties of Coatings

  •     Fundamentals and simulation of thin film growth
  •     Simulation of microstructures and properties
  •     Optical and diffractive properties
  •     Scattering, absorption, and birefringence
  •     Micro and nanostructure properties
  •     Mechanical and tribological properties
  •     Color and luminescence
  •     Stress, adhesion, and cohesion
  •     Thermal properties
  •     Environmental stability
  •     Laser induced damage
  •     Optical and non-optical thin film characterization techniques
  •     Postproduction characterization

5. Design of Coatings
  •     Computer and analytical design techniques
  •     Computational manufacturing
  •     Design of coatings for polarization control
  •     Multilayers and structured surfaces
  •     Structured and waveguide coatings