Short Courses

Short Courses

Short Courses cover a broad range of topic areas at a variety of educational levels (introductory to advanced). The courses are taught by highly regarded industry experts in a variety of specialties. Short Courses are an excellent opportunity to learn about new products, cutting-edge technology and vital information at the forefront of your field. They are designed to increase your knowledge of a specific subject while offering you the experience of knowledgeable teachers.

Certificate of Attendances are available for those who register and attend a course. To request a Certificate of Attendance after the conference, please email with your name, the course name, conference name, and year.
Each Short Course requires a separate fee. Paid registration includes admission to the course and one copy of the Short Course Notes. Advance registration is advisable. The number of seats in each course is limited, and on-site registration is not guaranteed.

2014 ASSL Short Courses

12:30 - 15:30 - Sunday, 16 November
SC290 High Power Fiber Lasers and Amplifiers
SC422 Current Trends in Ultrashort Pulse Laser Technology

16:00 - 20:00 - Sunday, 16 November
SC419 Crystal Parametric Nonlinear Optics: Modelling, Materials and Devices

2014 Short Course Descriptions

SC290 High Power Fiber Lasers and Amplifiers
12:30 - 15:30 - Sunday, 16 November
Johan Nilsson; Univ. of Southampton, UK

Course Level: Advanced Beginner (basic understanding of topic is necessary to follow course material)

Course Description: This course describes the principles and capabilities of high power fiber lasers and amplifiers, with output powers that can exceed a kilowatt. It describes the fundamentals of such devices and discusses current state of the art and research directions of this rapidly advancing field. Fiber technology, pump laser requirements and input coupling will be addressed. Rare-earth-doped fiber devices are the focus of the course, but Raman lasers and amplifiers will be considered, too, if time allows. This includes Yb-doped fibers at 1.0 - 1.1 μm, Er-doped fibers at 1.5 - 1.6 μm, and Tm-doped fibers at around 2 μm. Operating regimes extending from continuous-wave single-frequency to short pulses will be considered. Key equations will be introduced to find limits and identify critical parameters. For example, pump brightness is a critical parameter for some devices in some regimes but not always. Important limitations relate to nonlinear and thermal effects, as well as damage, energy storage and, of course, materials. Methods to mitigate limitations in different operating regimes will be discussed. Fiber, laser and amplifiers designs for different operating regimes will be described.

Benefits and Learning Objectives:

  • Describe the fundamentals of high power fiber lasers and amplifiers.
  • List key strengths, relative merits, and specific capabilities of high power fiber lasers and amplifiers.
  • Assess performance limitations and describe the underlying physical reasons in different operating regimes.
  • Design or specify basic fiber properties for specific operating regimes.
  • Describe the possibilities, limitations, and implications of current technology regarding core size and rare earth concentration of doped fibers.
  • Discuss different options for suppressing detrimental nonlinearities.
  • Design basic high power fiber lasers and amplifier systems.
  • List strengths and weaknesses of different pumping schemes.
Intended Audience: This course is intended for scientists and engineers involved or interested in commercial and military high power fiber systems. This includes system designers, laser designers, fiber fabricators, and users. A basic knowledge of fibers and lasers is needed.
Biography: Johan Nilsson is a professor in the Optoelectronics Research Centre (ORC), University of Southampton, England. He received a doctorate in engineering sciences from the Royal Institute of Technology, Stockholm, Sweden, in 1994, for research on optical amplification. Since then, he has worked on optical amplifiers and amplified lightwave systems, optical communications, guided-wave lasers and nonlinear optics, first at Samsung Electronics and now at the ORC, where he is leading a research group in the field of high-power fiber devices and applications. His research has primarily focused on devices but has also covered system, fabrication and materials aspects. He has given courses on high-power fiber sources at conferences such as Photonics West, ASSP, and OFC.

SC419 Crystal Parametric Nonlinear Optics: Modelling, Materials and Devices
16:00 - 20:00 - Sunday, 16 November
Benoit Boulanger, Grenoble Univ., CNRS-NEEL Institute, France
Course Level: Intermediate
Course Description: This lecture focuses on fundamental crystal parametric optics that is one of the most fascinating field of nonlinear optics involving corpuscular and wave aspects of light in strong interaction with the electrons of matter, and leading to optical frequency synthesis and mixing at the origin of numerous applications.

  • Constitutive relations and Maxwell equations.
  • Classification of the nonlinear interactions through the corpuscular approach: fusion and splitting involving three or four photons, spontaneous and stimulated processes.
  • Calculation of the electric susceptibility by Lorentz model: perturbation approach leading to the definition of the different orders of the electric susceptibility, wavelength dispersion, intrinsic symmetries (Kleinman and ABDP), implications of spatial symmetry on the susceptibility tensors (Neumann principle).
  • Tensor algebra and calculation of the first, second and third order polarizations.
  • Modelling of the macroscopic nonlinearities of matter from the microscopic scale using the bond charge model and ab initio calculation, Miller index.
  • Basics in linear crystal optics: propagation equation, index surface, birefringence, double refraction, eigenmodes.
  • Amplitude equations in the nonlinear regime, Manley-Rowe relations.
  • Calculation of the effective coefficient based on the field tensor formalism.
  • Types and topology of collinear and non-collinear Birefringence Phase-matching and Quasi-Phase-Matching in bulk media and whispering-gallery-mode resonators.
  • Conversion efficiency calculation of second harmonic generation (SHG), direct and cascaded third harmonic generation (THG), and optical parametric interactions: fluorescence, amplification (OPA), chirped pulse amplification (OPCPA), generation (OPG), oscillation (OPO).
  • Angular, spectral and thermal acceptances.
  • Spatial and temporal walk-off effects.
  • Techniques of characterization of nonlinear crystals for the determination of phase-matching and quasi-phase-matching loci, magnitude and relative signs of the nonlinear coefficients, acceptances.
  • The main materials for parametric generation, from ultraviolet to THz.
Benefits and Learning Objectives: This new course aims at giving guidelines and tools for the design, characterization and use of crystals for parametric generation. This course should enable participants to:

  • Explain the main lines and key parameters of fundamental crystal parametric optics
  • Compare the figures of merit of various nonlinear materials
  • Compute phase-matching directions, quasi-phase-matching periodicities, angular and spectral acceptances, effective coefficients, conversion efficiencies
  • Measure nonlinear coefficients, phase-matching directions, spectral and angular acceptances, a figure of merit, a conversion efficiency
  • Define the relevant parameters for the design of new nonlinear crystal
  • List the main nonlinear materials enabling parametric generation
  • Identify the right crystal corresponding to the targeted application
  • Design up-conversion and down-conversion parametric devices
Intended Audience: This course is specifically built for physicists as well as chemists interested in crystal parametric optics: crystal growers and designers wanting to identify the relevant parameters, laser physicists aiming at working in nonlinear optics or users willing to go deeper in the field at the frontier of crystal physics,  coming from industry or universities and other academic institutes. Various job levels are concerned: PhD students, postdocs, engineers, researchers, professors. The basics of electromagnetism, solid state and laser physics are recommended.
Instructor Biography: Benoit Boulanger is Professor at Grenoble University and CNRS - Néel Institute. He has authored over 180 papers in refereed journals and conference proceedings. His work is at the frontiers between nonlinear crystal optics, material engineering and quantum optics. His main achievements concern the crystal growth of KTP compounds, the development of the field factor formalism, the invention of the sphere method, the understanding of gray-tracking in KTP, the development of angular-quasi-phase-matching, and the first demonstration of triple photon generation. Benoit Boulanger is Fellow of OSA and EOS since 2012, he was general co-chair of Non Linear Optics / OSA – Hawaii 2013, and he is Topical Editor for Optics Letters since 2014.

SC422 Current Trends in Ultrashort Pulse Laser Technology
12:30 - 15:30 - Sunday, 16 November
Andrius Baltuska, Technische Universität Wien, Austria

Course Level: Advanced Beginner

Course Description:The first part of the four-part lecture will highlight the rapidly growing scope of industrial, scientific, medical and sensing applications of femtosecond laser pulses and underscore unique light—matter interaction regimes enabling “cold” ablation, multiphoton bulk processing, femtosecond filamentation, tunable and broadband optical frequency conversion, coherent short-pulse X-ray and THz emission, etc., which only femtosecond lasers and no other laser technology can currently provide. Using three specific case studies, we will first summarize the shifting parameter space imposed on femtosecond sources by fledgling high-volume industrial and biomedical applications before examining the types of laser technology behind such sources. In the second part, we will identify, with brief descriptions, the main generic building blocks, such as oscillators, amplifiers, delivery systems, and survey main concepts, such as mechanisms of broadband modelocking, chirped-pulse laser and parametric amplification and alternatives to temporal pulse chirping, external compression, optical synchronization, coherent pulse combining and beam combining. In the third part, we will take a look at specific modern ultrafast optically pumped solid-state crystal oscillators and amplifiers and fiber lasers that are already playing a key role in the industrial and scientific market or are likely to occupy an important niche in the foreseeable future. We will examine the trends in the scaling of average power and peak power, repetition rate, laser wavelength, and pulse bandwidth. In particular, alternative technological routes such as laser amplification, parametric amplification and amplifier-free multiplexing/coherent addition will be juxtaposed to help the audience appreciate the strengths, weaknesses and symbiotic relations among the major competing concepts. In the final part, aimed at the course participants interested in extreme ultrafast optics, we will review several schemes that have succeeded in generating scalable near-single-cycle high-energy “ultimate” laser pulses and light transients measuring shorter than an optical cycle and discuss their applications.
Benefits and Learning Objectives:

  • Identify the key principles for the generation and amplification of femtosecond laser pulses.
  • Compare the main types of ultrafast optical amplifiers.
  • Determine which major subsystems are required in a femtosecond laser scheme dependent on the output target energy, duration, and average power.
  • Explain the main qualitative differences between broadband femtosecond laser chains and narrowband pulsed lasers.
  • Compare the engineering effort, material limits and system scalability for the key types of femtosecond systems.
Intended Audience: The target audience are graduate students and engineers working in laser optics and technology; industrial and academic attendees who are users or developers of laser-based processing of materials and tissues; medical and biological researchers using lasers in diagnostics, microsurgery and dentistry; researchers active in ultrafast spectroscopy and strong field applications; environmental scientists employing laser-driven spectrometric and/or nonlinear-optical spectroscopic techniques; defense experts with the background in optical countermeasures.
Instructor Biography: Andrius Baltuska received the diploma in physics from Vilnius University, Lithuania, in 1993 and a Ph.D. degree in chemical physics from the University of Groningen, The Netherlands, in 2000. Since 2006 he is a full professor at the faculty of Electrical Engineering and Information Technology, Vienna University of Technology. His group works on the development of intense ultrafast laser and parametric amplifiers and applications of fully controlled optical pulses in ultrafast spectroscopy and high-field physics.