Plenary Speakers

Steven Chu
Stanford University, USA

New Probes and Approaches to Optical, Electron Microscopy and Future Applications

We will discuss our development of rare earth and diamond nanoparticle probes to visualize the molecular organization of multiple proteins in cells and tissue. With SEM/cathodoluminescence imaging, we want to identify interacting proteins with cellular ultrastructure such as cellular membranes, organelles, synapses and vesicles.

Bio: Steven Chu is the William R. Kenan, Jr., Professor of Physics and Professor of Molecular & Cellular Physiology in the Medical School at Stanford University. His has published over 275 papers in atomic and polymer physics, biophysics, biology, batteries, and holds 11 patents. Currently, he is developing new optical nanoparticle probes for applications in biology and biomedicine, exploring new approaches to lithium ion batteries, PM2.5 air filtration and other applications of nanotechnology.

 
Dr. Chu was the 12th U.S. Secretary of Energy from January 2009 until the end of April 2013. As the first scientist to hold a Cabinet position and the longest serving Energy Secretary, he recruited outstanding scientists and engineers into the Department of Energy. He began several initiatives including ARPA-E (Advanced Research Projects Agency – Energy), the Energy Innovation Hubs, the U.S. – China Clean Energy Research Centers (CERC), and was personally tasked by President Obama to assist BP in stopping the Deepwater Horizon oil leak.
 
Prior to his cabinet post, he was director of the Lawrence Berkeley National Laboratory and Professor of Physics and Molecular and Cell Biology at UC Berkeley. Previously he was the Theodore and Francis Geballe Professor of Physics and Applied Physics at Stanford University. He helped launch Bio-X at Stanford University, a multi-disciplinary institute combining the physical and biological sciences with medicine and engineering, and the Kavli Institute for Particle Astrophysics and Cosmology. Previously he was head of the Quantum Electronics Research Department at AT&T Bell Laboratories.
 
Dr. Chu has dozens of awards including the 1997 Nobel Prize in Physics contributions to laser cooling and atom trapping. He has 29 honorary degrees and is a member of the National Academy of Sciences, the American Philosophical Society, the American Academy of Arts and Sciences, the Academia Sinica, and is a foreign member of the Royal Society, the Royal Academy of Engineering, the Chinese Academy of Sciences, and the Korean Academy of Sciences and Technology.

Subra Suresh
Carnegie Mellon University, USA

Cell Biophysics and Human Diseases


This presentation will examine how properties of biological cells influence human diseases, and vice versa, from the perspectives of biophysics and bioengineering.  Experimental and computational results will be presented along with specific examples in the context of infectious diseases, hereditary blood disorders, and human cancers.

Bio: Subra Suresh is the President of Carnegie Mellon University where he holds faculty appoints in the College of Engineering, Heinz College of Public Policy and Management, and the School of Computer Science.  A former Director of the National Science Foundation and recipient of 11 honorary doctorate degrees, Suresh is an elected member of the U.S. National Academies of Sciences, Engineering and Medicine along with the American Academy of Arts and Sciences and the National Academy of Inventors.  Suresh is the author/coauthor of over 250 journal articles and co-inventor in 25 patent applications involving research at the intersections of engineering, science and medicine, particularly into the mechanical behavior of engineered materials and the effects of cell properties on human diseases.

Laura Waller
University of California Berkeley, USA

Computational Microscopy for High-Throughput Science


Computational microscopy involves joint design of imaging system hardware and software, optimizing across the entire pipeline from acquisition to reconstruction. This talk will describe methods for fast acquisition and Gigapixel-scale image reconstruction with simple and inexpensive optics.



Bio: Laura Waller is the Ted Van Duzer Endowed Associate Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley, a Senior Fellow at the Berkeley Institute of Data Science, and affiliate in Bioengineering and Applied Sciences & Technology. She was a Postdoctoral Researcher and Lecturer of Physics at Princeton University from 2010-2012 and received B.S., M.Eng. and Ph.D. degrees in EECS from the Massachusetts Institute of Technology (MIT) in 2004, 2005 and 2010, respectively. She is recipient of the Moore Foundation Data-Driven Investigator Award, Bakar Fellowship, Carol D. Soc Distinguished Graduate Mentoring Award, Agilent Early Career Profeessor Award Finalist, NSF CAREER Award and Packard Fellowship for Science and Engineering.