News Releases


OSA News Releases

Welcome to the OSA News Releases page. This page contains news from The Optical Society, including research highlights from OSA's journals, conference news, award announcements and more. Sort releases by category below to see all the news releases in a particular area.

Members of the media, please contact the OSA Public Relations Team with questions or comments. You can also sign up to receive OSA news releases in your inbox.

Sort Releases:

News Releases


Researchers have developed a new fluorescence microscopy approach that significantly improves image resolution by acquiring three views of a sample at the same time. Their new method is particularly useful for watching the dynamics of biological processes, which can provide insights into how healthy cells work and what goes wrong when diseases occur.

The photovoltaic (PV) cells in traditional solar cells convert sunlight efficiently within a narrow range of wavelengths determined by the material used in the PV cells. This limits their efficiency, as long wavelengths of sunlight are not converted at all and the energy of short wavelength light is largely wasted. Scientists have sought to increase the efficiency of photovoltaics by creating “multi-junction” solar cells, made from several different semiconductor materials that absorb at varying wavelengths of light. The problem is, such multi-junction cells are expensive to make.

The primary source of infrared radiation is heat — the radiation produced by the thermal motion of charged particles in matter, including the motion of the atoms and molecules in an object. The higher the temperature of an object, the more its atoms and molecules vibrate, rotate, twist through their vibrational modes, the more infrared radiation they radiate. Because infrared detectors can be “blinded” by their own heat, high-quality infrared sensing and imaging devices are usually cooled down, sometimes to just a few degrees above absolute zero.

The brain is the most temperature-sensitive organ in the body. Even small deviations in brain temperature are capable of producing profound effects—including behavioral changes, cell toxicity, and neuronal cell death. The problem faced by researchers and clinicians is how to measure and understand these changes in the brain and how they are influenced by complex biochemical and physiological pathways that may be altered by disease, brain injury or drug abuse.

Today’s high-speed wired communication networks use lasers to carry information through optical fibers, but wireless networks are currently based on radiofrequencies or microwaves. In an advance that could one day make light-based wireless communications ubiquitous, researchers from Facebook Inc.’s Connectivity Lab have demonstrated a conceptually new approach for detecting optical communication signals traveling through the air.

         

Read current announcements about OSA member accomplishments and submit your own member news

OSA News Release RSS