Transforming Computers of the Future with Optical Interconnects



FOR IMMEDIATE RELEASE

Contact:
Lyndsay Meyer
The Optical Society
+1.202.416.1435
lmeyer@osa.org

Transforming Computers of the Future with Optical Interconnects

OFC/NFOEC 2012 to feature talk on future computing architectures enabled by optical and nanophotonic interconnects

HyperX

HyperX optical interconnect fabric. This sketch shows an optically connected topology called “HyperX.” Image courtesy of HP Labs.

WASHINGTON, Feb. 23— In order to build the next generation of very large supercomputers, it’s essential that scientists and engineers find a way to seamlessly scale computation performance without exceeding extraordinary power consumption. It is widely agreed that the major challenge to scaling future systems will no longer be the CMOS (Complementary Metal–Oxide–Semiconductor) integrated circuit technology but rather the data movement among processors and memory. The rapidly evolving technology of photonic interconnects promises to deliver this increase in computing capabilities by providing ultra-high communication bandwidths with extreme energy efficiency and should therefore provide the impetus to move the technology from the lab into actual products.

The ability to manufacture photonic interconnect components—modulators, detectors, waveguides, and filters—on silicon substrates has finally been realized, and these optical interconnect structures show great potential for both intrachip and interchip applications.

HP Labs, the central research lab for Hewlett Packard (HP) in Palo Alto, Calif., is studying how this shift to light-based interconnects may revolutionize the way computers are built. Moray McLaren of HP will present his findings at the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), taking place March 4–8 at the Los Angeles Convention Center.

“This is an exciting time because it’s a big transition for the industry,” says McLaren, a researcher in HP Labs’ Exascale Computing Lab, focused on inventing computer fabrics for next-generation IT solutions using a cross-layer, interdisciplinary approach. “In many respects, it’s one of the inevitable forces of technology that’s been much-heralded for 10 years. There’s finally industry-wide agreement that it will happen. We’ve reached the point where we can say that it’s an essential technology—we’ll need to have optical interconnects to deliver these machines in the 2017-2019 timeframe.”

How will these optical technologies change the way computers are built? Computer architects hold essentially two views on the role photonics will play.

One widely held view is that photonic interconnects are simply “smarter wire,” explains McLaren. “Today’s computers are connected with copper cable up to a certain distance, currently about 8 meters, and as data rates continue to increase, this threshold will drop to less than a meter. And once the threshold is exceeded, the interconnect transitions from copper to optics.”

While high-speed electronic interconnects are becoming increasingly range-limited, they still tend to cost less than optical interconnects. “The result is that people are contorting the way they build systems to use as many of the less expensive electronic connections as possible—and non-optimal wiring topologies,” notes McLaren.

The other viewpoint suggests that the characteristics and capabilities of optical communication are sufficiently different to the way things are done electronically—meaning that we need to entirely rethink how to build computers.

“There are things that we might do differently because the characteristics of optical interconnects are different,” McLaren points out. “One very simple example is that within a data center, distance isn’t much of a factor after you’ve transitioned to an optical interconnect. Having paid the price of moving from the electronic domain into the optical domain, we can connect up any distance.”

Another related topic that HP Labs is investigating, in terms of data centers, is pushing down power consumption. The power for computational parts is still reducing with Moore’s Law, along with the shrinking size of the individual transistors. But the power related to electronic communication isn’t shrinking nearly as much because it’s tied to real-world connectors and cables that don’t scale in the same way.

Two of the key benefits of photonics are that it has the potential to provide lower-power communication over certain distances, and moving into the optical world provides more headroom in channel capacity and bandwidth densities are much higher. “Photonic interconnects have very different properties than the electronic interconnects that underpin today’s computer architectures. To gain the maximum benefit from emerging nanophotonic interconnects, it’s necessary to reevaluate the design tradeoff at the system architect level,” McLaren notes.

Techniques that have fallen out of use in the electronic domain due to signal integrity considerations, such as broadcast and circuit switching, can be exploited to significant advantage in optical interconnects. Moving forward, the development of integrated CMOS nanophotonics will be critical to achieving the objectives of the most demanding computer development programs.

McLaren’s presentation at OFC/NFOEC, titled “Future computing architectures enabled by optical and nanophotonic interconnects,” will take place Tuesday, March 6 at 5 p.m. in the Los Angeles Convention Center.

EDITOR’S NOTE: A high-resolution graphic representation of HP’s optically connected topology called HyperX is available to members of the media. Contact Lyndsay Meyer, lmeyer@osa.org.

About OFC/NFOEC

For more than 35 years, the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) has been the premier destination for converging breakthrough research and innovation in telecommunications, optical networking and, recently, datacom and computing. Uniting service providers, systems companies, enterprise customers, IT businesses and component manufacturers, along with researchers, engineers and development teams, OFC/NFOEC combines dynamic business programming, an exposition of more than 500 companies and cutting-edge peer-reviewed research into one event that showcases the trends and pulse of the entire optical communications industry.

OFC/NFOEC is managed by the Optical Society (OSA) and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc) and the IEEE Photonics Society. Acting as a non-financial technical co-sponsor is Telcordia Technologies, Inc. Visit www.ofcnfoec.org.

###


Share:
Keyword
Topics

The Optical Society Creates Optical Design Innovator Award

The Optical Society (OSA) is pleased to announce the creation of the Kevin P. Thompson Optical Design Innovator Award recognizing significant contributions to lens design, optical engineering or metrology by an individual at an early career stage. The inaugural award will be given in 2018.

Added: 26 Jul 2017


Sophisticated Medical Imaging Technique Proves Useful for Automotive Industry

Many of today’s cars are coated with paint that exhibits a metallic or glittery shine. The exact sparkle and color you see is determined by the distribution and characteristics of tiny metal flakes used in the paint. A new approach based on the medical imaging technique optical coherence tomography (OCT) provides the car industry with a practical way to automatically analyze these metal flakes, which until now have been difficult to image, in order to improve the efficiency of the automotive finishing process.

Added: 25 Jul 2017


Optics Leaders Announced as Visionary Speakers for 2017 FIO + LS Meeting

The Frontiers in Optics + Laser Science APS/DLS (FIO + LS) conference and exhibition provides a venue for leaders in the optics and photonics community to discuss the latest advances in the field. In 2017, the FIO + LS meeting has been thoughtfully redesigned and revised, offering attendees the best of past meetings while adding innovative elements to this year’s meeting. A new speaker category of visionary speakers have been added and will deliver presentations around the four conference themes

Added: 20 Jul 2017


Researchers Look Inside Dangerous Blood Clots with Optical Clearing Technique

A new technique that makes blood clots optically clear is allowing researchers to use powerful optical microscopy techniques to study the 3D structure of dangerous clots for the first time. Although blood clots stop bleeding after injury, clots that block blood flow can cause strokes and heart attacks.

Added: 17 Jul 2017


New Imaging Technique Fast Enough to Watch Molecular Dynamics Involved in Neurodegenerative Diseases

Researchers have developed a fast and practical molecular-scale imaging technique that could let scientists view never-before-seen dynamics of biological processes involved in neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis.

Added: 13 Jul 2017


OSA Members Host Photonics Facility Tour for Congressman Charlie Dent

During the recent District Work Week, Representative Charlie Dent (R - Pa) toured the Center for Photonics and Nanoelectronics (CPN) and the Smith Family Laboratory for Optical Technologies, Lehigh University, PA. The tour was arranged by OSA members Nelson Tansu, the Daniel E. ’39 and Patricia M. Smith Endowed Chair Professor and Director of the CPN and Sean Anderson, a Photonics Engineer at Cisco.

Added: 12 Jul 2017


OSA’s Optics & Photonics News Wins 2017 APEX Award

OSA Publishing is pleased to announce that the staff of Optics & Photonics News (OPN), The Optical Society’s news and member magazine, has received a 2017 APEX Grand Award for publication excellence. The award honors a series of four commemorative booklets that the OPN team developed to highlight 100 years of The Optical Society.

Added: 11 Jul 2017


The Optical Society Announces 2017 OSA Optical Design & ​Fabrication Congress Highlights

Optical design and fabrication play an ever-increasing role in our modern society as more applications for optics are developed, especially in the areas of imaging, sensing and illumination systems. Advances in optical design and fabrication have led to the ability to utilize modern design tools to reduce cost, augment manufacturability, and enhance system performance in a wide variety applications.

Added: 05 Jul 2017


LASER World of Photonics 2017 Closes in Munich with a Record Number of Exhibitors and Attendees

WASHINGTON — The LASER World of Photonics Congress, a conference and exhibition co-sponsored by The Optical Society (OSA), attracted a record number of exhibitors and attendees over a four day period in Munich, Germany. The meeting was held in conjunction with CLEO/Europe – EQEC 2017 and the European Conferences on Biomedical Optics (ECBO 2017) from 25-29, June 2017.

Added: 03 Jul 2017


OSA Imaging & Applied Optics Congress Focuses on Breakthrough Imaging Innovations

The 2017 OSA Imaging and Applied Optics Congress (AIO/IS) concluded in San Francisco, California with nearly 350 attendees and more than 250 presentations from covering the diverse optical imaging industry. Research highlights included novel imaging optical imaging industry, innovative and collaborative applications and the future of imaging, as well as topical symposia highlighting advancements in 3D Image Acquisition and Display: Technology, Perception and Applications, Applied Industrial Optics, Computational Optical Sensing and Imaging, Imaging Systems and Applications, Mathematics in Imaging, Propagation Through and Characterization of Atmospheric and Oceanic Phenomena.

Added: 30 Jun 2017


Seeing the Forest Through the Trees with a New LiDAR System

Shortly after lasers were first developed in the 1960s, LiDAR – whose name originated as a combination of “light” and “radar” – capitalized on the newly unique precision they offered for measuring both time and distance. LiDAR quickly became the standard method for (3-D) land surveys and is now used in a multitude of sensing applications, such as self-driving cars.

Added: 27 Jun 2017


Moisture-Responsive ‘Robots’ Crawl with No External Power Source

Using an off-the-shelf camera flash, researchers turned an ordinary sheet of graphene oxide into a material that bends when exposed to moisture. They then used this material to make a spider-like crawler and claw robot that move in response to changing humidity without the need for any external power.

Added: 26 Jun 2017