The Solar Cell that Also Shines: Luminescent 'LED-type' Design Breaks Efficiency Record, Illuminates



FOR IMMEDIATE RELEASE

Contact:
Lyndsay Meyer
The Optical Society
+1.202.416.1435
lmeyer@osa.org

The Solar Cell that Also Shines: Luminescent 'LED-type' Design Breaks Efficiency Record, Illuminates 50-Year Mystery

Yablonovitch

Eli Yablonovitch and Owen Miller, who worked out the theory for the new solar cell efficiency. The monitor in the picture illustrates the new physics concept where increased light emission yields higher efficiency. Photo courtesy Eli Yablonovitch.


Solar Cells

A high-efficiency Alta Devices solar cell. Credit: Joe Foster, Alta Devices.

WASHINGTON, April 19 - To produce the maximum amount of energy, solar cells are designed to absorb as much light from the Sun as possible. Now researchers from the University of California, Berkeley, have suggested – and demonstrated – a counterintuitive concept: solar cells should be designed to be more like LEDs, able to emit light as well as absorb it. The Berkeley team will present its findings at the Conference on Lasers and Electro Optics (CLEO: 2012), to be held May 6-11 in San Jose, Calif.

"What we demonstrated is that the better a solar cell is at emitting photons, the higher its voltage and the greater the efficiency it can produce," says Eli Yablonovitch, principal researcher and UC Berkeley professor of electrical engineering.

Since 1961, scientists have known that, under ideal conditions, there is a limit to the amount of electrical energy that can be harvested from sunlight hitting a typical solar cell. This absolute limit is, theoretically, about 33.5 percent. That means that at most 33.5 percent of the energy from incoming photons will be absorbed and converted into useful electrical energy.

Yet for five decades, researchers were unable to come close to achieving this efficiency: as of 2010, the highest anyone had come was just more than 26 percent. (This is for flat-plate, "single junction" solar cells, which absorb light waves above a specific frequency. "Multi-junction" cells, which have multiple layers and absorb multiple frequencies, are able to achieve higher efficiencies.)

More recently, Yablonovitch and his colleagues were trying to understand why there has been such a large gap between the theoretical limit and the limit that researchers have been able to achieve. As they worked, a "coherent picture emerged," says Owen Miller, a graduate student at UC Berkeley and a member of Yablonovitch’s group. They came across a relatively simple, if perhaps counterintuitive, solution based on a mathematical connection between absorption and emission of light.

"Fundamentally, it’s because there’s a thermodynamic link between absorption and emission," Miller says. Designing solar cells to emit light – so that photons do not become "lost" within a cell – has the natural effect of increasing the voltage produced by the solar cell. "If you have a solar cell that is a good emitter of light, it also makes it produce a higher voltage," which in turn increases the amount of electrical energy that can be harvested from the cell for each unit of sunlight, Miller says.

The theory that luminescent emission and voltage go hand in hand is not new. But the idea had never been considered for the design of solar cells before now, Miller continues.

This past year, a Bay area-based company called Alta Devices, co-founded by Yablonovitch, used the new concept to create a prototype solar cell made of gallium arsenide (GaAs), a material often used to make solar cells in satellites. The prototype broke the record, jumping from 26 percent to 28.3 percent efficiency. The company achieved this milestone, in part, by designing the cell to allow light to escape as easily as possible from the cell – using techniques that include, for example, increasing the reflectivity of the rear mirror, which sends incoming photons back out through the front of the device.

Solar cells produce electricity when photons from the Sun hit the semiconductor material within a cell. The energy from the photons knocks electrons loose from this material, allowing the electrons to flow freely. But the process of knocking electrons free can also generate new photons, in a process called luminescence. The idea behind the novel solar cell design is that these new photons – which do not come directly from the Sun – should be allowed to escape from the cell as easily as possible.

"The first reaction is usually, why does it help [to let these photons escape]?" Miller says. "Don't you want to keep [the photons] in, where maybe they could create more electrons?" However, mathematically, allowing the new photons to escape increases the voltage that the cell is able to produce.

The work is "a good, useful way" of determining how scientists can improve the performance of solar cells, as well as of finding creative new ways to test and study solar cells, says Leo Schowalter of Crystal IS, Inc. and visiting professor at Rensselaer Polytechnic Institute, who is chairman of the CLEO committee on LEDs, photovoltaics, and energy-efficient photonics.

Yablonovitch says he hopes researchers will be able to use this technique to achieve efficiencies close to 30 percent in the coming years. And since the work applies to all types of solar cells, the findings have implications throughout the field.

The CLEO: 2012 presentation CF2J.1, "The Opto-Electronics which Broke the Efficiency Record in Solar Cells," by Eli Yablonovitch and Owen D. Miller, is at 10:30 a.m. Friday May 11 in the San Jose Convention Center.

EDITOR’S NOTE: High-resolution images are available to members of the media upon request. Contact Lyndsay Meyer, lmeyer@osa.org.

Press Registration

A Press Room for credentialed press and analysts will be located on-site at CLEO: 2012 in the San Jose Convention Center, May 6 – May 11. Media interested in attending the conference should register on the CLEO website or contact Lyndsay Meyer at 202.416.1435, lmeyer@osa.org.

About CLEO

With a distinguished history as the industry's leading event on laser science, the Conference on Lasers and Electro-Optics (CLEO) and the Quantum Electronics Laser Science Conference (QELS) is where laser technology was first introduced. CLEO: 2012 will unite the field of lasers and electro-optics by bringing together all aspects of laser technology, with content stemming from basic research to industry application. Sponsored by the American Physical Society's (APS) Laser Science Division, the Institute of Electronic Engineers (IEEE) Photonics Society and the Optical Society (OSA), CLEO: 2012 provides the full range of critical developments in the field, showcasing the most significant milestones from laboratory to marketplace. With an unparalleled breadth and depth of coverage, CLEO: 2012 connects all of the critical vertical markets in lasers and electro-optics. For more information, visit the conference's website at www.cleoconference.org.

###

Share:
Keyword
Topics

New Terahertz Imaging Approach Could Speed Up Skin Cancer Detection

Researchers have developed a new terahertz imaging approach that, for the first time, can acquire micron-scale resolution images while retaining computational approaches designed to speed up image acquisition. This combination could allow terahertz imaging to be useful for detecting early-stage skin cancer without requiring a tissue biopsy from the patient.

Added: 17 Aug 2017


New Tool Aims to Make Surgery Safer by Helping Doctors See Nerves

During operations, it can be difficult for surgeons to avoid severing crucial nerves because they look so much like other tissue. A new noninvasive approach that uses polarized light to make nerves stand out from other tissue could help surgeons avoid accidentally injuring nerves or assist them in identifying nerves in need of repair.

Added: 16 Aug 2017


Relativistic Self-Focusing Gives Mid-IR Driven Electrons a Boost

Conventional particle accelerators can range from large room-sized devices to facilities multiple kilometers across. One of the ways that scientists have looked to reduce the size and expense of future accelerators is by developing laser –driven plasma acceleration. Such accelerators, however, are growing in size and complexity in order to maintain relevance for one of their applications—high energy physics. However, there are many applications that can use a lower energy and higher repetition rate accelerated beam. For the first time, scientists have observed the production of relativistic electrons driven by low-energy, ultrashort mid-infrared laser pulses.

Added: 15 Aug 2017


OSA Laser Congress Plenary to Highlight Ultrafast Laser Systems and Black Hole Detection

The OSA Laser Congress 2017 will feature the latest advancements in solid state laser developments and related technologies for use in free space laser communication, laser-based sensing and numerous industrial applications.

Added: 10 Aug 2017


New Optical Method Pinpoints Weak Spots in Jet Engine Thermal Coatings

Researchers have demonstrated, for the first time, that an optical analysis method can reveal weak areas in ceramic thermal barrier coatings that protect jet engine turbines from high temperatures and wear. The technique could be used to predict how long coatings would last on an airplane and might eventually lead to new thermal barrier coatings, making engines more efficient and cutting both the cost and pollution of air travel.

Added: 09 Aug 2017


The Optical Society Congratulates Ed White on Selection as Chair of the NPI

The Optical Society (OSA) commends the selection of Edward White, associate vice president of test, assembly and packaging and corporate outreach for AIM Photonics, as the next National Photonics Initiative (NPI) Steering Committee Chair. White will succeed Alan Willner, the Steven and Kathryn Sample Chair in Engineering University of Southern California and 2016 president of OSA. The National Photonics Initiative is an alliance of top scientific societies uniting industry and academia to raise awareness of photonics, and its impact on society.

Added: 04 Aug 2017


See the World Differently at FIO + LS 2017

Whether you are in an autonomous vehicle looking to avoid collisions with nearby objects, or sitting on Earth and trying to detect collisions of black holes in the furthest galaxies, the Frontiers in Optics + Laser Science APS/DLS (FIO + LS) plenary presentations will detail recent achievements in gravitational wave science and today’s LiDAR applications.

Added: 03 Aug 2017


The Optical Society Foundation Concludes Successful 2017 Innovation School

The Optical Society Foundation (OSAF) hosted early-career professionals during its first Innovation School from 23-27 July at OSA headquarters in Washington DC. The four-day program focused on honing ‘intrapreneurial’ skills through a series of interactive ‘ideation and customer validation’ exercises. In addition, the hands-on program was accompanied by presentations led by CEO’s, entrepreneurs and innovation leaders in the optics and photonics industry.

Added: 01 Aug 2017


The Optical Society Creates Optical Design Innovator Award

The Optical Society (OSA) is pleased to announce the creation of the Kevin P. Thompson Optical Design Innovator Award recognizing significant contributions to lens design, optical engineering or metrology by an individual at an early career stage. The inaugural award will be given in 2018.

Added: 26 Jul 2017


Sophisticated Medical Imaging Technique Proves Useful for Automotive Industry

Many of today’s cars are coated with paint that exhibits a metallic or glittery shine. The exact sparkle and color you see is determined by the distribution and characteristics of tiny metal flakes used in the paint. A new approach based on the medical imaging technique optical coherence tomography (OCT) provides the car industry with a practical way to automatically analyze these metal flakes, which until now have been difficult to image, in order to improve the efficiency of the automotive finishing process.

Added: 25 Jul 2017


Optics Leaders Announced as Visionary Speakers for 2017 FIO + LS Meeting

The Frontiers in Optics + Laser Science APS/DLS (FIO + LS) conference and exhibition provides a venue for leaders in the optics and photonics community to discuss the latest advances in the field. In 2017, the FIO + LS meeting has been thoughtfully redesigned and revised, offering attendees the best of past meetings while adding innovative elements to this year’s meeting. A new speaker category of visionary speakers have been added and will deliver presentations around the four conference themes

Added: 20 Jul 2017


Researchers Look Inside Dangerous Blood Clots with Optical Clearing Technique

A new technique that makes blood clots optically clear is allowing researchers to use powerful optical microscopy techniques to study the 3D structure of dangerous clots for the first time. Although blood clots stop bleeding after injury, clots that block blood flow can cause strokes and heart attacks.

Added: 17 Jul 2017