New 'Metamaterial' Device May Lead to See-Through Cameras and Scanners



FOR IMMEDIATE RELEASE

Contact:
Lyndsay Meyer
CLEO/QELS
+1.202.416.1435
lmeyer@osa.org

Jason Socrates Bardi
American Institute of Physics
301. 209.3091
jbardi@aip.org

New ‘Metamaterial’ Device May Lead to See-Through Cameras and Scanners

Boston University Team Makes Strides in Detecting and Controlling Terahertz Radiation

WASHINGTON, May 6—Devices that can mimic Superman's X-ray vision and see through clothing, walls or human flesh are the stuff of comic book fantasy, but a group of scientists at Boston University (BU) has taken a step toward making such futuristic devices a reality.

The researchers will present their device at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS: 2010), which takes place May 16 to 21 at the San Jose McEnery Convention Center in San Jose, Calif.

Led by BU's Richard Averitt, the team has developed a new way to detect and control terahertz (THz) radiation using optics and materials science. This type of radiation is made up of electromagnetic waves that can pass through materials safely. Their work may pave the way for safer medical and security scanners, new communication devices, and more sensitive chemical detectors.

Scientists and engineers have long sought devices that could control THz transmissions. Such a device would be a technological breakthrough because it would allow information to be sent via THz waves. Like X-rays, these waves can pass through solid materials, potentially revealing hidden details within. Unlike the ionizing energy of real X-rays, THz radiation causes no damage to materials as it passes through them.

The quest to create devices that emit or manipulate THz radiation is often referred to as a race to fill in the "THz gap," since the frequency of THz radiation on the electromagnetic spectrum falls in between microwave and infrared radiation -- both of which are already broadly used in communication.

This race has often stumbled right out of the blocks, however, because no technologies have proven able to effectively solve the basic problem of manipulating the properties of a beam of THz radiation. Now Averitt and his colleagues have made an important step in this direction by using an unusual class of new materials known as "metamaterials."

Metamaterials are unusual in the way they interact with light, giving them properties that don't exist in natural materials. They have grabbed headlines and captured the popular imagination in recent years after several groups of researchers have used metamaterials to achieve limited forms of "cloaking" -- the ability of a material to completely bend light around itself so as to appear invisible.

Averitt uses these same sorts of metamaterials to interact with and change the intensity of a beam of THz radiation. His device consists of an array of split-ring-resonators -- a checkerboard of flexible metamaterial panels that can bend and tilt. By rotating the panels, his team can control the electromagnetic properties of a beam of THz energy passing by them.

"The idea is that you can manipulate your terahertz beam by reorienting the metamaterial elements as opposed to reorienting your beam," says Averitt.

Arrays of these metamaterial panels could potentially function as pixels on a camera that detects THz radiation, he says. Absorption of THz radiation would cause the panels to tilt more or less depending on the intensity of the THz bombarding them.

"One of the goals, from a technological point of view, is to be able to do stand-off imaging, to be able to detect things beneath a person's clothes or in a package," says Averitt.

Such detection applications, though, would require more powerful THz sources like quantum cascade lasers, which are under development -- though great technological strides have been made in the last few years.

Presentation CtuF3, "Structurally Reconfigurable Metamaterials at Terahertz Frequencies," by Hu Tao and Richard D. Averitt takes place Tuesday, May 18 at 8:30 a.m.

ABOUT CLEO/QELS

With a distinguished history as the industry’s leading event on laser science, the Conference on Lasers and Electro-Optics (CLEO) / Quantum Electronics Laser Science Conference (QELS) is where laser technology was first introduced. In 2010, CLEO/QELS will unite the field of lasers and electro-optics by bringing together all aspects of laser technology, with content stemming from basic research to industry application. Sponsored by the American Physical Society’s (APS) Laser Science Division, the Institute of Electronic Engineers (IEEE) Photonics Society and the Optical Society (OSA), CLEO/QELS provides a holistic reflection of the critical developments in the field, showcasing the most significant milestones from laboratory to marketplace. With an unparalleled breadth and depth of coverage, CLEO/QELS connects all of the critical vertical markets in lasers and electro-optics. For more information, visit the conference’s website at www.cleoconference.org/.

###


Share:
Keyword
Topics

Optical Communications Innovators to Deliver Keynote Presentations at OFC 2018

The Optical Fiber Communication Conference and Exhibition (OFC), the world’s leading conference and exhibition for optical communications and networking professionals, is pleased to announce the outstanding lineup of keynote speakers for OFC 2018. Marcus Weldon, Nokia Bell Labs, USA, John C. Doyle, California Institute of Technology (CalTech), USA, and Chengliang Zhang, China Telecom, China, will take the stage to discuss future innovations in optics-based communication technologies.

Added: 19 Oct 2017


David J. Wineland and Amnon Yariv Named 2017 Honorary Members of The Optical Society

The Optical Society (OSA) is pleased to name the recently elected, 2017 Honorary Members. The recipients are David Jeffrey Wineland, 2012 Physics Nobel Laureate, University of Oregon, USA, and Amnon Yariv, California Institute of Technology (CalTech), USA. The 2017 Honorable Members were approved unanimously by the OSA Board of Directors. Honorary Membership is the most distinguished of all OSA Member categories and is awarded to individuals who have made unique, seminal contributions to the field of optics.

Added: 18 Oct 2017


New Imaging Approach Maps Whole-Brain Changes from Alzheimer’s Disease in Mice

An estimated 5.5 million Americans live with Alzheimer’s disease, a type of dementia that causes problems with memory, thinking and behavior. Although treatments can slow the worsening of symptoms, scientists are still working to better understand the neurodegenerative disease so that curative and preventative medicines can be developed. A new imaging system could help speed new drug development by offering a better way to monitor the brain changes indicative of Alzheimer’s in mouse models of the disease.

Added: 17 Oct 2017



The Optical Society Announces 2018 Fellows Class

The Optical Society (OSA) Board of Directors is pleased to announce that 101 OSA members, representing 19 countries, have been elected to the 2018 OSA Fellows Class. Fellows are selected based on several factors, including specific scientific, engineering, and technological contributions, technical or industry leadership in the field as well as service to OSA and the global optics community.

Added: 13 Oct 2017


In a first for wearable optics, researchers develop stretchy fiber to capture body motion

The exciting applications of wearable sensors have sparked a tremendous amount of research and business investment in recent years. Sensors attached to the body or integrated into clothing could allow athletes and physical therapists to monitor their progress, provide a more detailed level of motion capture for computer games or animation, help engineers build robots with a lighter touch or form the basis for new types of real-time health monitors.

Added: 12 Oct 2017


Freeze Frame Microscopy for 3D Biological Images Captures 2017 Nobel Prize in Chemistry

“The Nobel Committee’s recognition of yet another type of biomedical imaging underscores just how important, and enabling imaging and microscopy techniques are to all areas of science and medicine,” stated Elizabeth M.C. Hillman, professor of Biomedical Engineering at Radiology, Columbia University, and general chair of the upcoming 2018 OSA BioPhotonics Congress.

Added: 04 Oct 2017


Unlocking the Secrets of the Universe; LIGO Team Awarded 2017 Nobel Prize in Physics

Astrophysicists have long sought to detect ripples in space-time, called gravitational waves, since Albert Einstein’s 1916 prediction of General Relativity. But only some of the most massive astrophysical events, such as mergers of black holes and neutron stars, can produce gravitational waves strong enough to be detected on earth. Today, the 2017 Nobel Prize in Physics was awarded to Barry C. Barish and Kip S. Thorne, California Institute of Technology, USA and Rainer Weiss, Massachusetts Institute of Technology, USA, "for decisive contributions to the LIGO detector and the observation of gravitational waves."

Added: 03 Oct 2017


DNA: The next hot material in photonics?

Using DNA from salmon, researchers in South Korea hope to make better biomedical and other photonic devices based on organic thin films. Often used in cancer treatments and health monitoring, thin films have all the capabilities of silicon-based devices with the possible added advantage of being more compatible with living tissue.

Added: 02 Oct 2017


Circadian Rhythms, the Body's Natural Time-Keeping System, Awarded 2017 Nobel Prize

Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are named circadian rhythms. The 2017 Nobel Prize in Physiology or Medicine was awarded today to Jeffrey C. Hall and Michael Rosbash of Brandeis University, USA and Michael W. Young, Rockefeller University, USA, "for their discoveries of molecular mechanisms controlling the circadian rhythm."

Added: 02 Oct 2017


The Optical Society Congratulates the LIGO and Virgo Scientific Collaboration for Fourth Gravitation

Albert Einstein’s 1916 general theory of relativity was validated for a fourth time according a joint announcement between the international LIGO and Virgo Scientific Collaborations. Only some of the most massive astrophysical events, such as mergers of black holes and neutron stars, can produce gravitational waves strong enough to be detected on earth. On August 14, the Virgo Collaboration, along with the U.S. LIGO observatories, detected its first gravitational wave signal from a pair of black holes violently merging over a billion light-years away. LIGO’s previous detections have stemmed from merging black holes but this is the first time a merger has been witnessed by three observatories at one time.

Added: 28 Sep 2017


OSA Laser Congress Highlights Latest Advances in Solid State Lasers, Free-space Laser Communication,

The 2017 OSA Laser Congress will offer a comprehensive view of the latest advancements in solid state lasers and other related technology. The conference program is comprised of a global audience of laser leaders and a comprehensive, peer-reviewed presentations. Market-focused sessions describe the needed technological and engineering advancements required to move these laser technologies into commercial products.

Added: 26 Sep 2017