New 'Metamaterial' Device May Lead to See-Through Cameras and Scanners



FOR IMMEDIATE RELEASE

Contact:
Lyndsay Meyer
CLEO/QELS
+1.202.416.1435
lmeyer@osa.org

Jason Socrates Bardi
American Institute of Physics
301. 209.3091
jbardi@aip.org

New ‘Metamaterial’ Device May Lead to See-Through Cameras and Scanners

Boston University Team Makes Strides in Detecting and Controlling Terahertz Radiation

WASHINGTON, May 6—Devices that can mimic Superman's X-ray vision and see through clothing, walls or human flesh are the stuff of comic book fantasy, but a group of scientists at Boston University (BU) has taken a step toward making such futuristic devices a reality.

The researchers will present their device at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS: 2010), which takes place May 16 to 21 at the San Jose McEnery Convention Center in San Jose, Calif.

Led by BU's Richard Averitt, the team has developed a new way to detect and control terahertz (THz) radiation using optics and materials science. This type of radiation is made up of electromagnetic waves that can pass through materials safely. Their work may pave the way for safer medical and security scanners, new communication devices, and more sensitive chemical detectors.

Scientists and engineers have long sought devices that could control THz transmissions. Such a device would be a technological breakthrough because it would allow information to be sent via THz waves. Like X-rays, these waves can pass through solid materials, potentially revealing hidden details within. Unlike the ionizing energy of real X-rays, THz radiation causes no damage to materials as it passes through them.

The quest to create devices that emit or manipulate THz radiation is often referred to as a race to fill in the "THz gap," since the frequency of THz radiation on the electromagnetic spectrum falls in between microwave and infrared radiation -- both of which are already broadly used in communication.

This race has often stumbled right out of the blocks, however, because no technologies have proven able to effectively solve the basic problem of manipulating the properties of a beam of THz radiation. Now Averitt and his colleagues have made an important step in this direction by using an unusual class of new materials known as "metamaterials."

Metamaterials are unusual in the way they interact with light, giving them properties that don't exist in natural materials. They have grabbed headlines and captured the popular imagination in recent years after several groups of researchers have used metamaterials to achieve limited forms of "cloaking" -- the ability of a material to completely bend light around itself so as to appear invisible.

Averitt uses these same sorts of metamaterials to interact with and change the intensity of a beam of THz radiation. His device consists of an array of split-ring-resonators -- a checkerboard of flexible metamaterial panels that can bend and tilt. By rotating the panels, his team can control the electromagnetic properties of a beam of THz energy passing by them.

"The idea is that you can manipulate your terahertz beam by reorienting the metamaterial elements as opposed to reorienting your beam," says Averitt.

Arrays of these metamaterial panels could potentially function as pixels on a camera that detects THz radiation, he says. Absorption of THz radiation would cause the panels to tilt more or less depending on the intensity of the THz bombarding them.

"One of the goals, from a technological point of view, is to be able to do stand-off imaging, to be able to detect things beneath a person's clothes or in a package," says Averitt.

Such detection applications, though, would require more powerful THz sources like quantum cascade lasers, which are under development -- though great technological strides have been made in the last few years.

Presentation CtuF3, "Structurally Reconfigurable Metamaterials at Terahertz Frequencies," by Hu Tao and Richard D. Averitt takes place Tuesday, May 18 at 8:30 a.m.

ABOUT CLEO/QELS

With a distinguished history as the industry’s leading event on laser science, the Conference on Lasers and Electro-Optics (CLEO) / Quantum Electronics Laser Science Conference (QELS) is where laser technology was first introduced. In 2010, CLEO/QELS will unite the field of lasers and electro-optics by bringing together all aspects of laser technology, with content stemming from basic research to industry application. Sponsored by the American Physical Society’s (APS) Laser Science Division, the Institute of Electronic Engineers (IEEE) Photonics Society and the Optical Society (OSA), CLEO/QELS provides a holistic reflection of the critical developments in the field, showcasing the most significant milestones from laboratory to marketplace. With an unparalleled breadth and depth of coverage, CLEO/QELS connects all of the critical vertical markets in lasers and electro-optics. For more information, visit the conference’s website at www.cleoconference.org/.

###


Share:
Keyword
Topics

The Optical Society Opposes Proposed Cuts to Science Funding in 2018 Budget

23 May 2017 The Optical Society Opposes Proposed Cuts to Science Funding in 2018 Budget WASHINGTON —The Optical Society (OSA) issued the following statement on the release of President Donald Trump’s proposed fiscal year 2018 budget. The proposed budget will cut critical investments in research and development at a number of science-related government agencies, including the...

Added: 23 May 2017


The Optical Society Commemorates the Rich Tradition and History of Optics Letters

22 May 2017   The Optical Society Commemorates the Rich Tradition and History of Optics Letters Journal Celebrates 40th Anniversary in 2017  WASHINGTON – First launched in 1977 as a means to quickly disseminate the latest in optics research and provide the optics and photonics community with a true Letters-style publication, Optics Letters has, over the course of its long...

Added: 22 May 2017


CLEO 2017 Concludes in San Jose with Strong Attendance; Laser Science Advancements Highlighted

CLEO 2017 Concludes in San Jose with Strong Attendance; Focus on Breakthrough Research in Laser Science and Commercial Applications Plenary presentations detailed latest developments in Gravitational Wave Science, Ultrafast Lasers, Quantum Electronics and Biophotonics SAN JOSE, CALIFORNIA — The Optical Society announced today that CLEO 2017 (CLEO) has concluded with more than 4...

Added: 18 May 2017


The Optical Society Announces 2017 Class of Senior Members

16 May 2017 The Optical Society Announces 2017 Class of Senior Members WASHINGTON — The Optical Society (OSA) Board of Directors is pleased to announce the approval of 182 new Senior Members — an OSA distinction that provides well-established individuals recognition for their experience and professional accomplishments within the field of optics and photonics. The 182 Senior...

Added: 16 May 2017


2017 Benjamin Franklin Medal in Electrical Engineering Awarded to OSA Member Nick Holonyak, Jr.

12 May 2017   2017 Benjamin Franklin Medal in Electrical Engineering Awarded to OSA Member Nick Holonyak, Jr. WASHINGTON — The Optical Society (OSA), the leading global professional organization in optics and photonics, congratulates Honorary member Nick Holonyak, Jr. on recieving the 2017 Benjamin Franklin Medal in Electrical Engineering. Holonayk developed the first visible...

Added: 12 May 2017


The Optical Society Announces Plenary Highlights at 2017 Imaging and Applied Optics Congress

9 May 2017  The Optical Society Announces Plenary Highlights at 2017 Imaging and Applied Optics CongressPlenary to feature distinguished cinematographer and ‘Intelligent Transportation’ expert SAN FRANCISCO – Optical imaging technologies make a significant impact on media, medicine, autonomous machines and robotics. They can be used for imaging and sensing...

Added: 09 May 2017


The Optical Society Applauds Congress Supporting Science in 2017 Appropriations Bill

4 May 2017  The Optical Society Applauds Congress Supporting Science in 2017 Appropriations Bill WASHINGTON —The Optical Society (OSA) issued the following statement on the passage of the Fiscal Year 2017 Omnibus Appropriations bill by the U.S. House of Representatives and Senate. The bill keeps critical funding for various science agencies at or near levels approved by...

Added: 04 May 2017


New Fiber-Based Sensor Could Quickly Detect Structural Problems in Bridges and Dams

04 May 2017   New Fiber-Based Sensor Could Quickly Detect Structural Problems in Bridges and Dams Faster distributed sensor detects changes in temperature or strain at 1 million points over a 10-kilometer optical fiber   WASHINGTON — Today, there is great interest in using distributed sensors to continually monitor the structural health of large structures such as dams...

Added: 04 May 2017


Members of The Optical Society Inducted into the 2018 National Academy of Sciences

2 May 2017 Members of The Optical Society Inducted into the 2018 National Academy of SciencesLeaders in Gravitational Wave Science, Nergis Mavalvala and Gabriela González, Selected for Elite Honorary Society WASHINGTON – The National Academy of Sciences (NAS), a private organization dedicated to the furtherance of science, today announced the election of 84 new members and 21 foreign...

Added: 02 May 2017


The Optical Society Foundation Announces 2017 Innovation School

1 May 2017  The Optical Society Foundation Announces 2017 Innovation SchoolOfferings in pitch development, client discovery and concept validation for early-career professionals WASHINGTON – The Optical Society Foundation (OSAF) invites early-career professionals in the field of optics and photonics to attend The Innovation School at The Optical Society in Washington, D.C. from 23...

Added: 01 May 2017


OSA Members Visit Capitol Hill to Encourage Continued Investment in Scientific Research

27 April 2017   30 Members of The Optical Society Visit Capitol Hill to Encourage Continued Investment in Scientific Research, Engineering and Technology  WASHINGTON – Members of The Optical Society (OSA) joined colleagues from the National Photonics Initiative (NPI) in taking part in meetings with over 70 Congressional and Senate offices encouraging both Republican and...

Added: 27 Apr 2017


New Fiber Optic Probe Brings Endoscopic Diagnosis of Cancer Closer to the Clinic

27 April 2017   New Fiber Optic Probe Brings Endoscopic Diagnosis of Cancer Closer to the Clinic Compact handheld probe can be used for microscopic analysis of tissue  without any special stains or preparation   WASHINGTON — In an important step toward endoscopic diagnosis of cancer, researchers have developed a handheld fiber optic probe that can be used to perform...

Added: 27 Apr 2017