Optical Fiber Communication Conference to Feature Research Breakthroughs on the Future of Broadband


Lyndsay Meyer

Jason Socrates Bardi
America Institute of Physics
+1 301.209.3091

Optical Fiber Communication Conference to Feature Research Breakthroughs on the Future of Broadband Internet

Major Research Conference to be held in San Diego, March 21-25, on Future of Optical Communication

WASHINGTON, March 15—The world’s largest international conference on optical communication and networking convenes this month from March 21-25 at the San Diego Convention Center. Nearly 10,000 attendees are expected at the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), and journalists are invited to attend the meeting for free.

OFC/NFOEC is the premier meeting where experts from industry and academia intersect and share their results, experiences, and insights on the future of optical communication and the technologies that will enable it. This year’s lineup will feature many engaging talks and panels, including:

  • PLENARY PRESENTATIONS: "Broadband in Africa" by Brian Herlihy, president, SEACOM, Mauritius; "Beyond Today’s Broadband Networks" by Philippe Keryer, executive vice president, president, Carrier Product Group, Alcatel-Lucent, USA; and "Challenges for New Generation Networks" by Hideo Miyahara, president, NICT, Japan. To access speaker bios and talk abstracts, see: http://www.ofcnfoec.org/conference_program/Plenary.aspx.
  • MARKET WATCH, a three-day series of presentations and panel discussions on the applications and business of optical communications, featuring esteemed guest speakers from the industrial, research and investment communities. See: http://www.ofcnfoec.org/conference_program/Market_Watch.aspx.
  • SERVICE PROVIDER SUMMIT, a dynamic program with topics and speakers of interest to CTOs, network architects, network designers and technologists within the service provider and carrier sector. See: http://www.ofcnfoec.org/conference_program/Service_Provider_Summit.aspx.

The conference also features a comprehensive technical program with talks covering the latest research related to all aspects of optical communication. Much of the research being presented in 2010 covers what’s in store for the future of broadband Internet. Some of the highlights, outlined below, include:

  • An Express-Lane for the Internet
  • Piping Wireless into the Home
  • Looking into the Future of Data-Routing with IRIS
  • A Better Way to Watch YouTube: OpenFlow Opens Up Carrier Networks

Additional research summaries in the areas of green IT, optical interconnects in supercomputers, and an all-optical fast Fourier transform are available online at: http://www.ofcnfoec.org/media_center/ofc_releases/2010/AddnlNews.aspx. Research news on using LEDs to broadcast data and cloud computing has also been announced.


The Internet is expected to be inundated in the future with billions of gigabytes (or exabytes) of data as high-definition video and other bandwidth-busting downloads become the norm. The cost of upgrading the Internet for this so-called "exaflood" could make Web connections too expensive for most consumers. Internet service providers may be able to keep prices down by opening up an express-lane for large data hauls.

It is estimated that 99 percent of the traffic volume of the Internet is devoted to large downloads—like movies, medical scans and financial data— that are only 1 percent of all data transfer sessions. These huge bundles are currently handled in the same way all data is handled by the Internet: the files are chopped up into little packets and then shuffled through traffic. Although this works fine for e-mail and Web pages, says MIT researcher Vincent Chan, it is very inefficient for large streams of data. An alternative, called optical flow switching (OFS), essentially opens a direct line between users that they can use for a few seconds all to themselves.

To reserve a spot on this express lane, users would send a request over the normal Internet. The most that someone would have to wait is a few seconds before data will start flowing. That's plenty fast for most people, but some users will be willing to pay extra to jump ahead in the queue.

Chan says that OFS can reduce the price per bit by 50 times compared to current electronic packet switching. The savings come from a simplified network architecture that has less overhead devoted to processing data address labels. An OFS test bed has been in operation for the last 10 years, connecting U.S. government sites on the east coast. Chan says there is now a "groundswell" of interest in OFS from Asia and Europe.

Talk OWI6, "Optical Flow Switching" (Wednesday, March 24, 9:30–10 a.m.)


Besides carrying digital data, optical fibers can also transmit radio signals for wireless communication. So-called "radio-over-fiber" technology has been used to provide access to radio dead zones, but new research is looking into using this technology to broadcast wireless closer to home.

Radio over fiber (RoF) modulates an optical wavelength in the fiber with a radio signal. This solves the attenuation problem during transport of the signal, while allowing the centralization of signal generation and processing equipment. A wireless signal can be simply relayed down the fiber to remote antennas that cost relatively little to install and should be immune to upgrades. RoF is already being used to transmit wireless signals into hard to reach areas like tunnels and stadiums.

In his talk, Mikhail Popov of Acreo AB in Sweden reviews options for taking RoF into homes and buildings along the optical access (PON) infrastructure, as part of a general trend toward merging wired and wireless communication. Fiber in this case would already be carrying Internet traffic, but it could also carry cell phone conversations transmitted over a remote antenna installed in the premises. In a multi-user scenario, the radio signals would pass directly onto the fiber without any processing. However, for a single home, it would make more sense to set up a "femtonode" that converts the radio waves from wireless devices into Internet data and uses the home Internet connection to connect to other mobile users. In any case, this network sharing could provide indoor wireless coverage at a fraction of the cost of relying solely on outdoor base stations, Popov says.

In the future, wireless home networks may be built on an RoF skeleton. As of now, most homes and businesses use WiFi to connect to laptops, but soon TVs and other media devices may need a wireless hook-up. One way to get more bandwidth is to trade WiFi for ultra-wideband (UWB), which can support data rates that are 1,000 times faster. The trouble is that UWB can only travel approximately 10 meters and is unable to penetrate walls, so there needs to be a way to distribute the signal throughout a house or building.

One solution is to use optical fibers. In a separate talk, Benoit Charbonnier of R&D Orange FT Group in France will describe a UWB RoF network that he and his colleagues have built. Their design calls for the UWB signal being transmitted and received by access points in each room. These access points simply relay the wireless signal over the fiber network to a central hub that down-converts the radio frequency to facilitate processing. This network architecture allows all the hardware to be transparent to whatever wireless products are being used in the home. Charbonnier will present recent test results that show his team’s RoF network can distribute a 3 Gbit/s signal with good fidelity.

Talk OWQ6, "The Convergence of Wired and Wireless Services Delivery in Access and In-Home Networks" (Wednesday, March 24, 2:30 - 3 p.m.)

Talk OThO3, "Ultra-Wideband Radio over Fiber Techniques and Networks" (Thursday, March 25, 1:30–2 p.m.)


The Internet is on the verge of overheating, as big network routers are forced to sort through more and more data packets. One solution is to install photonic routers that leave data in the form of light, thereby avoiding unnecessary electronic processing. Researchers at Alcatel-Lucent Bell Labs and LGS Innovations, both in New Jersey, have built an operational photonic router prototype that could conceivably manage hundreds of terabits of data per second.

The DARPA-funded IRIS project is unique among other photonic routers in that it separates the two main jobs of a router: switching where packets go and managing when packets leave. This division of labor makes it easy to scale the design up for higher data rates. Like a traditional router, IRIS is connected to multiple optical fibers as input and output. Each fiber carries several wavelengths of light that encode their own separate stream of data packets. IRIS only reads and electronically processes the address header of each incoming data packet. The actual information contained in the packet is held temporarily inside a small integrated optical buffer until its time of departure. "The packet does not get converted into an electronic signal at any point," says Jurgen Gripp of Bell Labs, Alcatel-Lucent. This can provide power savings over electronic routers in many but not all cases.

Gripp and his team members designed and built IRIS in such a way that light packets travel on photonic integrated circuits. "The level of integration of optical components is a breakthrough," Gripp says. The researchers have tested the IRIS prototype on a network testbed and are now preparing to hook it up to commercial routers so that real Internet traffic can flow through it.

Talk OThP3, "Photonic Terabit Routers: The IRIS Project" (Thursday, March 25, 1:30–2 p.m.)


To ensure that we can all watch YouTube without interruption, major Internet service providers must manage two very different switching technologies. Wide area "IP" networks made up of packet switches are interconnected over long distances by circuit-switched “transport” networks.

A typical service provider operates and manages these two networks independently, leading to a duplication of functionality and resources as well as to higher operating costs. Additionally, the two networks do not dynamically interact. For example, in response to long-term changes in demand, IP network controllers must contact circuit-switch network controllers, who adjust the long-distance pipelines by manually plugging in new circuits that increase or decrease the bandwidth.

"This is a long, drawn-out process that can take days or week to accomplish," said Guru Parulkar. He and his team at Stanford University have developed a way to merge the two network architectures that could allow Internet service providers to cut costs and to respond more flexibly to the needs of their users.

Past efforts to bridge packet-based and circuit-based technologies have approached the problem with the assumption that the two networks, which have very different architectures, must remain distinct. As a result, trying to span the two networks has resulted in very complex solutions.  The transformation of circuit-based technology to IP has vastly changed this equation as both packet-based and circuit-based applications run on the same IP platform.  But little has been done to show the possibility and consistency of a uniform solution.  The OpenFlow project takes advantage of this architectural evolution in the direction of true convergence. It merges the two types of networks by blurring the distinction between packet switches and circuit switches, presenting them both as "data-plane" flow switch abstractions (that switch at different granularities) to an external, decoupled "control plane." Such an abstraction is achieved between the controller and the switches via the OpenFlow protocol. This then enables new capabilities that can exploit the mix of switching technologies dynamically.

For example, the "controller can configure a circuit in seconds instead of days or weeks," said Vinesh Gudla, one of the students working on the project. Gudla will present a set-up of two packet switches connected by a circuit switch that uses OpenFlow to stream video.

Talk OtuG2, "Experimental Demonstration of OpenFlow Control of Packet and Circuit Switches" (Tuesday, March 23, 2:30–2:45 p.m.)

The OFC/NFOEC Website is http://www.ofcnfoec.org/. In addition to comprehensive technical programming information, the site includes details on the trade show and exposition, where the latest in optical technology from more than 500 of the industry's key companies will be on display.

Members of the press who wish to attend the meeting should contact Lyndsay Meyer at lmeyer@osa.org. More information can be found online at the OFC/NFOEC media center: http://www.ofcnfoec.org/media_center/index.aspx.

Since 1979, the Optical Fiber Communication Conference and Exposition (OFC) has provided an annual backdrop for the optical communications field to network and share research and innovations. In 2004, OFC joined forces with the National Fiber Optic Engineers Conference (NFOEC), creating the largest and most comprehensive international event for optical communications. By combining an exposition of approximately 500 companies with a unique program of peer-reviewed technical programming and special focused educational sessions, OFC/NFOEC provides an unparalleled opportunity, reaching every audience from service providers to optical equipment manufacturers and beyond. OFC/NFOEC is managed by the Optical Society (OSA) and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc) and the IEEE Photonics Society. Acting as non-financial technical co-sponsor is Telcordia Technologies, Inc.


Optical Communications Innovators to Deliver Keynote Presentations at OFC 2018

The Optical Fiber Communication Conference and Exhibition (OFC), the world’s leading conference and exhibition for optical communications and networking professionals, is pleased to announce the outstanding lineup of keynote speakers for OFC 2018. Marcus Weldon, Nokia Bell Labs, USA, John C. Doyle, California Institute of Technology (CalTech), USA, and Chengliang Zhang, China Telecom, China, will take the stage to discuss future innovations in optics-based communication technologies.

Added: 19 Oct 2017

David J. Wineland and Amnon Yariv Named 2017 Honorary Members of The Optical Society

The Optical Society (OSA) is pleased to name the recently elected, 2017 Honorary Members. The recipients are David Jeffrey Wineland, 2012 Physics Nobel Laureate, University of Oregon, USA, and Amnon Yariv, California Institute of Technology (CalTech), USA. The 2017 Honorable Members were approved unanimously by the OSA Board of Directors. Honorary Membership is the most distinguished of all OSA Member categories and is awarded to individuals who have made unique, seminal contributions to the field of optics.

Added: 18 Oct 2017

New Imaging Approach Maps Whole-Brain Changes from Alzheimer’s Disease in Mice

An estimated 5.5 million Americans live with Alzheimer’s disease, a type of dementia that causes problems with memory, thinking and behavior. Although treatments can slow the worsening of symptoms, scientists are still working to better understand the neurodegenerative disease so that curative and preventative medicines can be developed. A new imaging system could help speed new drug development by offering a better way to monitor the brain changes indicative of Alzheimer’s in mouse models of the disease.

Added: 17 Oct 2017

The Optical Society Announces 2018 Fellows Class

The Optical Society (OSA) Board of Directors is pleased to announce that 101 OSA members, representing 19 countries, have been elected to the 2018 OSA Fellows Class. Fellows are selected based on several factors, including specific scientific, engineering, and technological contributions, technical or industry leadership in the field as well as service to OSA and the global optics community.

Added: 13 Oct 2017

In a first for wearable optics, researchers develop stretchy fiber to capture body motion

The exciting applications of wearable sensors have sparked a tremendous amount of research and business investment in recent years. Sensors attached to the body or integrated into clothing could allow athletes and physical therapists to monitor their progress, provide a more detailed level of motion capture for computer games or animation, help engineers build robots with a lighter touch or form the basis for new types of real-time health monitors.

Added: 12 Oct 2017

Freeze Frame Microscopy for 3D Biological Images Captures 2017 Nobel Prize in Chemistry

“The Nobel Committee’s recognition of yet another type of biomedical imaging underscores just how important, and enabling imaging and microscopy techniques are to all areas of science and medicine,” stated Elizabeth M.C. Hillman, professor of Biomedical Engineering at Radiology, Columbia University, and general chair of the upcoming 2018 OSA BioPhotonics Congress.

Added: 04 Oct 2017

Unlocking the Secrets of the Universe; LIGO Team Awarded 2017 Nobel Prize in Physics

Astrophysicists have long sought to detect ripples in space-time, called gravitational waves, since Albert Einstein’s 1916 prediction of General Relativity. But only some of the most massive astrophysical events, such as mergers of black holes and neutron stars, can produce gravitational waves strong enough to be detected on earth. Today, the 2017 Nobel Prize in Physics was awarded to Barry C. Barish and Kip S. Thorne, California Institute of Technology, USA and Rainer Weiss, Massachusetts Institute of Technology, USA, "for decisive contributions to the LIGO detector and the observation of gravitational waves."

Added: 03 Oct 2017

DNA: The next hot material in photonics?

Using DNA from salmon, researchers in South Korea hope to make better biomedical and other photonic devices based on organic thin films. Often used in cancer treatments and health monitoring, thin films have all the capabilities of silicon-based devices with the possible added advantage of being more compatible with living tissue.

Added: 02 Oct 2017

Circadian Rhythms, the Body's Natural Time-Keeping System, Awarded 2017 Nobel Prize

Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are named circadian rhythms. The 2017 Nobel Prize in Physiology or Medicine was awarded today to Jeffrey C. Hall and Michael Rosbash of Brandeis University, USA and Michael W. Young, Rockefeller University, USA, "for their discoveries of molecular mechanisms controlling the circadian rhythm."

Added: 02 Oct 2017

The Optical Society Congratulates the LIGO and Virgo Scientific Collaboration for Fourth Gravitation

Albert Einstein’s 1916 general theory of relativity was validated for a fourth time according a joint announcement between the international LIGO and Virgo Scientific Collaborations. Only some of the most massive astrophysical events, such as mergers of black holes and neutron stars, can produce gravitational waves strong enough to be detected on earth. On August 14, the Virgo Collaboration, along with the U.S. LIGO observatories, detected its first gravitational wave signal from a pair of black holes violently merging over a billion light-years away. LIGO’s previous detections have stemmed from merging black holes but this is the first time a merger has been witnessed by three observatories at one time.

Added: 28 Sep 2017

OSA Laser Congress Highlights Latest Advances in Solid State Lasers, Free-space Laser Communication,

The 2017 OSA Laser Congress will offer a comprehensive view of the latest advancements in solid state lasers and other related technology. The conference program is comprised of a global audience of laser leaders and a comprehensive, peer-reviewed presentations. Market-focused sessions describe the needed technological and engineering advancements required to move these laser technologies into commercial products.

Added: 26 Sep 2017