Tiny lasers get a notch up



FOR IMMEDIATE RELEASE

Contact:
Lyndsay Meyer
The Optical Society
+1.202.416.1435
lmeyer@osa.org

Jason Socrates Bardi
American Institute of Physics
301.209.3091
jbardi@aip.org

Tiny lasers get a notch up

A new theoretical analysis could help design better microlasers

WASHINGTON, Jan. 22—Tiny disk-shaped lasers as small as a speck of dust could one day beam information through optical computers. Unfortunately, a perfect disk will spray light out, not as a beam, but in all directions. New theoretical results, reported in the Optical Society (OSA) journal Optics Letters, explain how adding a small notch to the disk edge provides a single outlet for laser light to stream out.

To increase the speed of computers and telecommunication networks, researchers are looking to replace electrical currents with beams of light that would originate from small semiconductor lasers. However, shrinking lasers down to a few micrometers in size is not easy. The typical laser builds up its concentrated light beam by bouncing light rays, or modes, back and forth inside a reflective cavity. This linear design is not practical for microlasers. Instead, scientists discovered in 1992 that they could get light amplification by having rays bounce around in a circle inside a small flat disk. These light rays are called "whispering gallery modes" because they are similar to sound waves that travel across a room by skimming along a curved wall or ceiling.

The problem is that a disk is rotationally invariant, so there is no preferred direction for the amplified light to escape. Many microlaser designs end up shooting light out in multiple directions within the plane of the disk. "The experimentalists have a holy grail of unidirectional emission in microlasers," says Martina Hentschel of the Max Planck Institute for the Physics of Complex Systems.  In the past few years, some progress has been made with so-called spiral microlasers, which have a tiny notch that resembles the outer opening of a snail shell. Certain experiments have shown that light tends to propagate in a single direction from the notch. But other experiments have not been so lucky. In order to understand these contrasting results, Hentschel and her colleague Tae-Yoon Kwon have performed a systematic study of spiral microlasers using a state-of-the-art theoretical description.

Physicists typically treat the light rays trapped inside a cavity as if they were billiard balls bouncing off walls, Hentschel explains. Some light rays escape, but those rays that just barely graze the inside surface are fully reflected back into the cavity (this being the same effect that channels light beams along optical fibers). Unfortunately, this simple "billiard" model is not sufficient for explaining spiral microlasers, Hentschel says.

Hentschel and Kwon therefore chose a more sophisticated model based on the electromagnetic wave and laser equations. This framework allowed the researchers to control what part of the semiconductor material would be excited, or "pumped," to a light-emitting state. Numerical calculations showed that the two whispering gallery modes inside a spiral cavity—one traveling clockwise, the other counterclockwise—are coupled together, but only one of these modes is able to escape out through the spiral's notch. To maximize this unidirectional emission, the researchers found that the notch size should be roughly twice the wavelength of the light. Moreover, the pumping needs to be confined to the rim of the spiral, specifically the outer 10 percent. These parameters could aid in the design of better-collimated microlasers. "The optimal geometry and boundary pumping is very useful to know for an experimentalist," Hentschel says.

Paper: "Spiral Microlasers," Optics Letters, Vol. 34 No. 2, January 15, 2009.

About OSA
Uniting more than 70,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

###

Share:
Keyword
Topics

New Imaging Approach Maps Whole-Brain Changes from Alzheimer’s Disease in Mice

An estimated 5.5 million Americans live with Alzheimer’s disease, a type of dementia that causes problems with memory, thinking and behavior. Although treatments can slow the worsening of symptoms, scientists are still working to better understand the neurodegenerative disease so that curative and preventative medicines can be developed. A new imaging system could help speed new drug development by offering a better way to monitor the brain changes indicative of Alzheimer’s in mouse models of the disease.

Added: 17 Oct 2017



The Optical Society Announces 2018 Fellows Class

The Optical Society (OSA) Board of Directors is pleased to announce that 101 OSA members, representing 19 countries, have been elected to the 2018 OSA Fellows Class. Fellows are selected based on several factors, including specific scientific, engineering, and technological contributions, technical or industry leadership in the field as well as service to OSA and the global optics community.

Added: 13 Oct 2017


In a first for wearable optics, researchers develop stretchy fiber to capture body motion

The exciting applications of wearable sensors have sparked a tremendous amount of research and business investment in recent years. Sensors attached to the body or integrated into clothing could allow athletes and physical therapists to monitor their progress, provide a more detailed level of motion capture for computer games or animation, help engineers build robots with a lighter touch or form the basis for new types of real-time health monitors.

Added: 12 Oct 2017


Freeze Frame Microscopy for 3D Biological Images Captures 2017 Nobel Prize in Chemistry

“The Nobel Committee’s recognition of yet another type of biomedical imaging underscores just how important, and enabling imaging and microscopy techniques are to all areas of science and medicine,” stated Elizabeth M.C. Hillman, professor of Biomedical Engineering at Radiology, Columbia University, and general chair of the upcoming 2018 OSA BioPhotonics Congress.

Added: 04 Oct 2017


Unlocking the Secrets of the Universe; LIGO Team Awarded 2017 Nobel Prize in Physics

Astrophysicists have long sought to detect ripples in space-time, called gravitational waves, since Albert Einstein’s 1916 prediction of General Relativity. But only some of the most massive astrophysical events, such as mergers of black holes and neutron stars, can produce gravitational waves strong enough to be detected on earth. Today, the 2017 Nobel Prize in Physics was awarded to Barry C. Barish and Kip S. Thorne, California Institute of Technology, USA and Rainer Weiss, Massachusetts Institute of Technology, USA, "for decisive contributions to the LIGO detector and the observation of gravitational waves."

Added: 03 Oct 2017


DNA: The next hot material in photonics?

Using DNA from salmon, researchers in South Korea hope to make better biomedical and other photonic devices based on organic thin films. Often used in cancer treatments and health monitoring, thin films have all the capabilities of silicon-based devices with the possible added advantage of being more compatible with living tissue.

Added: 02 Oct 2017


Circadian Rhythms, the Body's Natural Time-Keeping System, Awarded 2017 Nobel Prize

Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are named circadian rhythms. The 2017 Nobel Prize in Physiology or Medicine was awarded today to Jeffrey C. Hall and Michael Rosbash of Brandeis University, USA and Michael W. Young, Rockefeller University, USA, "for their discoveries of molecular mechanisms controlling the circadian rhythm."

Added: 02 Oct 2017


The Optical Society Congratulates the LIGO and Virgo Scientific Collaboration for Fourth Gravitation

Albert Einstein’s 1916 general theory of relativity was validated for a fourth time according a joint announcement between the international LIGO and Virgo Scientific Collaborations. Only some of the most massive astrophysical events, such as mergers of black holes and neutron stars, can produce gravitational waves strong enough to be detected on earth. On August 14, the Virgo Collaboration, along with the U.S. LIGO observatories, detected its first gravitational wave signal from a pair of black holes violently merging over a billion light-years away. LIGO’s previous detections have stemmed from merging black holes but this is the first time a merger has been witnessed by three observatories at one time.

Added: 28 Sep 2017


OSA Laser Congress Highlights Latest Advances in Solid State Lasers, Free-space Laser Communication,

The 2017 OSA Laser Congress will offer a comprehensive view of the latest advancements in solid state lasers and other related technology. The conference program is comprised of a global audience of laser leaders and a comprehensive, peer-reviewed presentations. Market-focused sessions describe the needed technological and engineering advancements required to move these laser technologies into commercial products.

Added: 26 Sep 2017


The Mars 2020 Rover Features New Spectral Abilities with its New SuperCam

As the NASA Curiosity rover roams the surface of Mars, its ChemCam captures the chemical makeup of its surroundings with a specially designed laser system. It is the most powerful laser to operate on the surface of another planet. The burst of infrared light it fires lasts only a few billionths of seconds, but it is powerful enough to vaporize the spot it hits at more than 8,000°C. Even from a distance, the ChemCam can examines rocks and soil using a process called Laser Induced Breakdown Spectroscopy (LIBS), where laser bursts atomize and excite components and spectral images capture their chemical signatures.

Added: 25 Sep 2017


Science and Applications Intersect at the 2017 FIO + LS

The 2017 Frontiers in Optics + Laser Science (FIO + LS) conference and exhibition concluded today featuring the latest in optics and photonics research and technology. With over 1,200 attendees, this year’s meeting has been redesigned to provide attendees with innovative elements, such as the new Science and Industry Showcase and Visionary Speakers, and new presentation formats to spur thoughtful conversation around a richer array of results.

Added: 21 Sep 2017