Open Wide and Say 'Zap'



FOR IMMEDIATE RELEASE

Contact:
Lyndsay Meyer
The Optical Society
+1.202.416.1435
lmeyer@osa.org

Jason Socrates Bardi
American Institute of Physics
+1 301.209.3091
jbardi@aip.org

Open Wide and Say ‘Zap’

Optics Express Paper Describes New Way to Clinically Assess Condition of Tooth Enamel Using Lasers

WASHINGTON, Aug. 18–A group of researchers in Australia and Taiwan has developed a new way to analyze the health of human teeth using lasers. As described in the latest issue of Optics Express, the Optical Society’s (OSA) open-access journal, by measuring how the surface of a tooth responds to laser-generated ultrasound, they can evaluate the mineral content of tooth enamel – the semi-translucent outer layer of a tooth that protects the underlying dentin.

This is the first time anyone has been able to non-destructively measure the elasticity of human teeth, creating a method that can be used to assess oral health and predict emerging dental problems, such as tooth decay and cavities.

“The ultimate goal is to come up with a quick, efficient, cost-effective, and non-destructive way to evaluate the mineralization of human dental enamel,” says David Hsiao-Chuan Wang, a graduate student at the University of Sydney in Australia and first author on the paper in Optics Express. Wang and his advisor Simon Fleming, a physics professor at the University of Sydney’s Institute of Photonics and Optical Science, collaborated on the study with dental researchers at the University of Sydney and ultrasonic evaluation researchers at National Cheng Kung University in Tainan City, Taiwan.

Stronger than bone, enamel is the hardest and the most mineralized substance of the human body – one of the reasons why human teeth can survive for centuries after a person has died. It envelops teeth in a protective layer that shields the underlying dentin from decay.

Throughout a person's lifetime, enamel constantly undergoes a cycle of mineral loss and restoration, in which healthy teeth maintain a high mineral content. If the balance between mineral loss and gain is lost, however, teeth can develop areas of softened enamel – known as carious lesions – which are precursors to cavities and permanently damaged teeth.

Enamel demineralization is caused by bad oral hygiene. Not brushing, for instance, can lead to the build-up of dental plaques, and bacteria in these plaques will absorb sugars and other carbohydrates a person chews and produce acids that will dissolve the minerals in tooth enamel.

Quantifying the mineral content of tooth enamel can help dentists determine the location and the severity of developing dental lesions. Existing methods for evaluating enamel are limited, however. Dentists can visually assess the teeth, but dental lesions can be hard to spot in certain parts of the mouth because they are obscured by dental plaque, saliva, or the structure of a tooth itself. Dentists can use sharp instruments to probe the enamel, but this can be destructive to the teeth and gums. X-ray scans can reveal dental lesions, but they give no information on the level of mineralization.

For research purposes, “nano-indentation” is commonly used for gaining information on the elasticity of tooth enamel – a measure of its mineral content – but nano-indentation destroys the measured regions of the enamel in the process and is only used to look at extracted teeth.

What Wang, Fleming, and their colleagues wanted to do was to develop a clinical method that would give as much information as nano-indentation and could be used to assess tooth enamel in actual patients while being completely non-destructive. So they developed a way to measure the elasticity of tooth enamel by adapting laser ultrasonic surface wave velocity dispersion, a method similar to what industrial engineers use to evaluate the integrity of thin films and metals.

The method uses short duration laser pulses to excite ultrasonic waves that propagate along the surface and penetrate only a small distance into a tooth. The velocity of these waves is influenced by the elastic properties of the enamel on a tooth, and by detecting the ultrasonic waves with fiber optics at various points, they can determine the enamel’s elasticity, which is directly related to its mineralization.

In their Optics Express article, Wang, Fleming, and their colleagues showed that they could use this technique on extracted human teeth. They have not yet tested the technique on a living person's teeth, and it will likely take several years before any eventual device is ready for use in the dentist's office.

This work was funded by the Australian Government and Bio-Dental Technology Pty. Ltd.

Paper: “Laser Ultrasonic Surface Wave Dispersion Technique for Non-destructive Evaluation of Human Dental Enamel,” Hsiao-Chuan Wang et al., Optics Express.

About OSA
Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

###


Share:
Keyword
Topics

Optical Communications Innovators to Deliver Keynote Presentations at OFC 2018

The Optical Fiber Communication Conference and Exhibition (OFC), the world’s leading conference and exhibition for optical communications and networking professionals, is pleased to announce the outstanding lineup of keynote speakers for OFC 2018. Marcus Weldon, Nokia Bell Labs, USA, John C. Doyle, California Institute of Technology (CalTech), USA, and Chengliang Zhang, China Telecom, China, will take the stage to discuss future innovations in optics-based communication technologies.

Added: 19 Oct 2017


David J. Wineland and Amnon Yariv Named 2017 Honorary Members of The Optical Society

The Optical Society (OSA) is pleased to name the recently elected, 2017 Honorary Members. The recipients are David Jeffrey Wineland, 2012 Physics Nobel Laureate, University of Oregon, USA, and Amnon Yariv, California Institute of Technology (CalTech), USA. The 2017 Honorable Members were approved unanimously by the OSA Board of Directors. Honorary Membership is the most distinguished of all OSA Member categories and is awarded to individuals who have made unique, seminal contributions to the field of optics.

Added: 18 Oct 2017


New Imaging Approach Maps Whole-Brain Changes from Alzheimer’s Disease in Mice

An estimated 5.5 million Americans live with Alzheimer’s disease, a type of dementia that causes problems with memory, thinking and behavior. Although treatments can slow the worsening of symptoms, scientists are still working to better understand the neurodegenerative disease so that curative and preventative medicines can be developed. A new imaging system could help speed new drug development by offering a better way to monitor the brain changes indicative of Alzheimer’s in mouse models of the disease.

Added: 17 Oct 2017



The Optical Society Announces 2018 Fellows Class

The Optical Society (OSA) Board of Directors is pleased to announce that 101 OSA members, representing 19 countries, have been elected to the 2018 OSA Fellows Class. Fellows are selected based on several factors, including specific scientific, engineering, and technological contributions, technical or industry leadership in the field as well as service to OSA and the global optics community.

Added: 13 Oct 2017


In a first for wearable optics, researchers develop stretchy fiber to capture body motion

The exciting applications of wearable sensors have sparked a tremendous amount of research and business investment in recent years. Sensors attached to the body or integrated into clothing could allow athletes and physical therapists to monitor their progress, provide a more detailed level of motion capture for computer games or animation, help engineers build robots with a lighter touch or form the basis for new types of real-time health monitors.

Added: 12 Oct 2017


Freeze Frame Microscopy for 3D Biological Images Captures 2017 Nobel Prize in Chemistry

“The Nobel Committee’s recognition of yet another type of biomedical imaging underscores just how important, and enabling imaging and microscopy techniques are to all areas of science and medicine,” stated Elizabeth M.C. Hillman, professor of Biomedical Engineering at Radiology, Columbia University, and general chair of the upcoming 2018 OSA BioPhotonics Congress.

Added: 04 Oct 2017


Unlocking the Secrets of the Universe; LIGO Team Awarded 2017 Nobel Prize in Physics

Astrophysicists have long sought to detect ripples in space-time, called gravitational waves, since Albert Einstein’s 1916 prediction of General Relativity. But only some of the most massive astrophysical events, such as mergers of black holes and neutron stars, can produce gravitational waves strong enough to be detected on earth. Today, the 2017 Nobel Prize in Physics was awarded to Barry C. Barish and Kip S. Thorne, California Institute of Technology, USA and Rainer Weiss, Massachusetts Institute of Technology, USA, "for decisive contributions to the LIGO detector and the observation of gravitational waves."

Added: 03 Oct 2017


DNA: The next hot material in photonics?

Using DNA from salmon, researchers in South Korea hope to make better biomedical and other photonic devices based on organic thin films. Often used in cancer treatments and health monitoring, thin films have all the capabilities of silicon-based devices with the possible added advantage of being more compatible with living tissue.

Added: 02 Oct 2017


Circadian Rhythms, the Body's Natural Time-Keeping System, Awarded 2017 Nobel Prize

Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are named circadian rhythms. The 2017 Nobel Prize in Physiology or Medicine was awarded today to Jeffrey C. Hall and Michael Rosbash of Brandeis University, USA and Michael W. Young, Rockefeller University, USA, "for their discoveries of molecular mechanisms controlling the circadian rhythm."

Added: 02 Oct 2017


The Optical Society Congratulates the LIGO and Virgo Scientific Collaboration for Fourth Gravitation

Albert Einstein’s 1916 general theory of relativity was validated for a fourth time according a joint announcement between the international LIGO and Virgo Scientific Collaborations. Only some of the most massive astrophysical events, such as mergers of black holes and neutron stars, can produce gravitational waves strong enough to be detected on earth. On August 14, the Virgo Collaboration, along with the U.S. LIGO observatories, detected its first gravitational wave signal from a pair of black holes violently merging over a billion light-years away. LIGO’s previous detections have stemmed from merging black holes but this is the first time a merger has been witnessed by three observatories at one time.

Added: 28 Sep 2017


OSA Laser Congress Highlights Latest Advances in Solid State Lasers, Free-space Laser Communication,

The 2017 OSA Laser Congress will offer a comprehensive view of the latest advancements in solid state lasers and other related technology. The conference program is comprised of a global audience of laser leaders and a comprehensive, peer-reviewed presentations. Market-focused sessions describe the needed technological and engineering advancements required to move these laser technologies into commercial products.

Added: 26 Sep 2017