Silicon Optical Fiber Made Practical



FOR IMMEDIATE RELEASE

Contact:
Lyndsay Meyer
The Optical Society
+1.202.416.1435
lmeyer@osa.org

Jason Socrates Bardi
American Institute of Physics
301.209.3091
jbardi@aip.org

Silicon Optical Fiber Made Practical

WASHINGTON, Oct. 28 – Scientists at Clemson University for the first time have been able to make a practical optical fiber with a silicon core, according to a new paper published in the current issue of the Optical Society’s open-access journal, Optics Express. Led by Professor John Ballato and including fiber pioneer Roger Stolen, the team of scientists was able to create this new fiber by employing the same commercial methods that are used to develop all-glass fibers, making silicon fibers viable alternatives to glass fibers for selected specialty applications. This advance ultimately should help increase efficiency and decrease power consumption in computers and other systems that integrate photonic and electronic devices.

Optical fibers carry an increasing fraction of phone calls, television programs and Internet traffic. The main advantage of using optical fibers is higher bandwidth, which means faster downloads from the Web, for example. The ability to produce silicon fibers commercially would create the opportunity for more compact devices with decreased power consumption in telecommunications and beyond.

“In essence, we’ve married optoelectronics with optical fibers,” said Ballato. “In the past, we’ve needed one structure to process light and another to carry it. With a silicon fiber, for the first time, we have the ability to greatly enhance the functionality in one fiber.”
 
Usually an optical fiber is made by starting with a glass core, wrapping it with a cladding made from a slightly different glass, and then heating the structure until it can be pulled out into long wires. This works well enough, but for some wavelengths of light, a core made of pure crystalline silicon, like the one developed by the Clemson team,  would better carry signals. Additionally, crystalline silicon exhibits certain nonlinear properties (in which the output is not proportional to the input) that are many orders of magnitude larger than for conventional silica glass.  This would, for example, allow for the amplification of a light signal or for the shifting of light from one wavelength to another. The development of a silicon fiber opens the way for signal processing functions that are currently done electronically or in separate optical circuits to be performed directly inside the fiber, which allows for more compact, efficient systems.

Some fibers have been made with a silicon core, but the Clemson version (with collaborators at UCLA, Northrop Grumman and Elmira College) is the first to employ standard mass-production methods, bringing them closer to commercial reality.

Right now the amount of energy lost when the lightwaves move down this silicon fiber is no better than for other fibers at the longer wavelengths, but Ballato says that the work so far has been a proof-of-concept, and he expects energy losses to decline signficantly with continued optimization.

About OSA
Uniting more than 70,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

About Clemson University
A research leader in advanced materials, automotive engineering, bioengineering and genomics, Clemson University, located in Clemson, S.C., is a nationally recognized public research university, recently ranked 22 by U.S. News & World Report, where approximately 17,000 undergraduate and graduate students pursue more than 70 degree programs in five academic colleges. Clemson University is committed to a knowledge-based economy, moving research from the laboratory to the marketplace with particular focus on matching existing research strengths with existing economic strengths. For more information, go to www.clemson.edu. Additional information on optics at Clemson go to http://comset.clemson.edu/.

Share:
Keyword
Topics

Guide Star Alliance Team Receives OSA’s 2017 Paul F. Forman Team Engineering Excellence Award

The Optical Society (OSA) is pleased to announce that Guide Star Alliance is the winner of the 2017 Paul F. Forman Team Engineering Excellence Award. Under contract of and in close collaboration with the European Southern Observatory (ESO), industrial partners, TOPTICA Photonics and MPB Communications (MPBC), joined together to develop a high-power CW tunable laser system called the SodiumStar. The team’s development is now considered the quasi-standard for existing and planned telescopes around the world. The Guide Star Alliance will receive the award on 18 September 2017, during Frontiers in Optics (FiO) + Laser Science (LS) in Washington DC, USA.

Added: 18 Aug 2017


New Terahertz Imaging Approach Could Speed Up Skin Cancer Detection

Researchers have developed a new terahertz imaging approach that, for the first time, can acquire micron-scale resolution images while retaining computational approaches designed to speed up image acquisition. This combination could allow terahertz imaging to be useful for detecting early-stage skin cancer without requiring a tissue biopsy from the patient.

Added: 17 Aug 2017


New Tool Aims to Make Surgery Safer by Helping Doctors See Nerves

During operations, it can be difficult for surgeons to avoid severing crucial nerves because they look so much like other tissue. A new noninvasive approach that uses polarized light to make nerves stand out from other tissue could help surgeons avoid accidentally injuring nerves or assist them in identifying nerves in need of repair.

Added: 16 Aug 2017


Relativistic Self-Focusing Gives Mid-IR Driven Electrons a Boost

Conventional particle accelerators can range from large room-sized devices to facilities multiple kilometers across. One of the ways that scientists have looked to reduce the size and expense of future accelerators is by developing laser –driven plasma acceleration. Such accelerators, however, are growing in size and complexity in order to maintain relevance for one of their applications—high energy physics. However, there are many applications that can use a lower energy and higher repetition rate accelerated beam. For the first time, scientists have observed the production of relativistic electrons driven by low-energy, ultrashort mid-infrared laser pulses.

Added: 15 Aug 2017


OSA Laser Congress Plenary to Highlight Ultrafast Laser Systems and Black Hole Detection

The OSA Laser Congress 2017 will feature the latest advancements in solid state laser developments and related technologies for use in free space laser communication, laser-based sensing and numerous industrial applications.

Added: 10 Aug 2017


New Optical Method Pinpoints Weak Spots in Jet Engine Thermal Coatings

Researchers have demonstrated, for the first time, that an optical analysis method can reveal weak areas in ceramic thermal barrier coatings that protect jet engine turbines from high temperatures and wear. The technique could be used to predict how long coatings would last on an airplane and might eventually lead to new thermal barrier coatings, making engines more efficient and cutting both the cost and pollution of air travel.

Added: 09 Aug 2017


The Optical Society Congratulates Ed White on Selection as Chair of the NPI

The Optical Society (OSA) commends the selection of Edward White, associate vice president of test, assembly and packaging and corporate outreach for AIM Photonics, as the next National Photonics Initiative (NPI) Steering Committee Chair. White will succeed Alan Willner, the Steven and Kathryn Sample Chair in Engineering University of Southern California and 2016 president of OSA. The National Photonics Initiative is an alliance of top scientific societies uniting industry and academia to raise awareness of photonics, and its impact on society.

Added: 04 Aug 2017


See the World Differently at FIO + LS 2017

Whether you are in an autonomous vehicle looking to avoid collisions with nearby objects, or sitting on Earth and trying to detect collisions of black holes in the furthest galaxies, the Frontiers in Optics + Laser Science APS/DLS (FIO + LS) plenary presentations will detail recent achievements in gravitational wave science and today’s LiDAR applications.

Added: 03 Aug 2017


The Optical Society Foundation Concludes Successful 2017 Innovation School

The Optical Society Foundation (OSAF) hosted early-career professionals during its first Innovation School from 23-27 July at OSA headquarters in Washington DC. The four-day program focused on honing ‘intrapreneurial’ skills through a series of interactive ‘ideation and customer validation’ exercises. In addition, the hands-on program was accompanied by presentations led by CEO’s, entrepreneurs and innovation leaders in the optics and photonics industry.

Added: 01 Aug 2017


The Optical Society Creates Optical Design Innovator Award

The Optical Society (OSA) is pleased to announce the creation of the Kevin P. Thompson Optical Design Innovator Award recognizing significant contributions to lens design, optical engineering or metrology by an individual at an early career stage. The inaugural award will be given in 2018.

Added: 26 Jul 2017


Sophisticated Medical Imaging Technique Proves Useful for Automotive Industry

Many of today’s cars are coated with paint that exhibits a metallic or glittery shine. The exact sparkle and color you see is determined by the distribution and characteristics of tiny metal flakes used in the paint. A new approach based on the medical imaging technique optical coherence tomography (OCT) provides the car industry with a practical way to automatically analyze these metal flakes, which until now have been difficult to image, in order to improve the efficiency of the automotive finishing process.

Added: 25 Jul 2017


Optics Leaders Announced as Visionary Speakers for 2017 FIO + LS Meeting

The Frontiers in Optics + Laser Science APS/DLS (FIO + LS) conference and exhibition provides a venue for leaders in the optics and photonics community to discuss the latest advances in the field. In 2017, the FIO + LS meeting has been thoughtfully redesigned and revised, offering attendees the best of past meetings while adding innovative elements to this year’s meeting. A new speaker category of visionary speakers have been added and will deliver presentations around the four conference themes

Added: 20 Jul 2017