Optical Fiber and the Future of Communication - Major Research Conference to be held in San Diego, F



OPTICAL FIBER AND THE FUTURE OF COMMUNICATION

Major Research Conference to be held in San Diego, Feb. 24-28

******************************************************

**For Immediate Release**

For more information or advance copies of papers, contact:
Colleen Morrison (Optical Society of America),
(202) 416-1437, media@ofcconference.org.

Jason Socrates Bardi (American Institute of Physics)
(301) 209-3091, jbardi@aip.org.

WASHINGTON, Feb. 14—The world’s largest international conference on optical communications begins later this month and continues from Feb. 24-28 at the San Diego Convention Center in San Diego. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) is the premier meeting where experts from industry and academia intersect and share their results, experiences, and insights on the future of electronic and wireless communication and the optical technologies that will enable it.

Journalists are invited to attend the meeting, where more than 15,000 attendees are expected. This year’s lineup will have many engaging talks and panels, including:

  • MARKET WATCH, a three-day series of presentations and panel discussions featuring esteemed guest speakers from the industrial, research, and investment communities on the applications and business of optical communications.
  • PLENARY PRESENTATIONS: “Toward Terabit Ethernet” by Bob Metcalfe, general partner of Polaris Ventures; “Perspectives on Optical Communications” by Herwig Kogelnik, adjunct photonics systems research vice president, Bell Labs, Alcatel-Lucent; “Evolving Carrier Networks to Cost-Effectively Manage Proliferating Traffic Growth” by Pieter Poll, chief technology officer, Qwest Communications Corporation Inc. To access speaker bios and talk abstracts, see: http://www.ofcnfoec.org/conference_program/Plenary.aspx.
  • FUTURE INTERNET SYMPOSIUM, which aims to create a venue where the optical networking aspects of future Internetworking can be debated alongside computer science, related applications and other future Internet research topics, encouraging significant discussions between different research communities.

The OFC/NFOEC meeting Web site is http://www.ofcnfoec.org. There you can find the complete conference program and information on registration and housing. Also on the site is information on the trade show and exposition, where the latest in optical technology from more than 600 of the industry's key companies will be on display.

SCIENTIFIC HIGHLIGHTS

The conference also features a comprehensive technical program with talks covering the latest research related to all aspects of optical communication. Some of the highlights at OFC/NFOEC 2008 include the following.

************************************************************************

GOING WIRELESS THROUGH OPTICAL FIBERS

Getting the most out of limited bandwidth will be more and more essential as wireless demands increase in the near future. Zhensheng Jia and Professor Gee-Kung Chang’s optical networking group at the Georgia Institute of Technology in Atlanta is showing how to get the most of wireless capacity and bandwidth by splitting wireless signals into separate components and then using optical fiber to carry wireless signals to their destination where they are re-integrated. The long-range linkages are provided by optical fiber, but the last few tens of meters are provided by wireless. The result: users can communicate wirelessly at a much higher bandwidth over a longer distance than is possible without using a fiber.

This convergence of optics and wireless technology is a marriage of necessity—but in the end a happy one because it means potentially supplying a greater and longstanding bandwidth to the end user, who will get the signal wirelessly. In his OFC paper in collaboration with NEC Labs America, Jia will discuss an efficient and flexible method that has been shown via experiments to be able to carry multi-channel wireless signals transmitted over 160 km of optical fiber and through 12 straight-line switches. Talk OMO3, “Transport of 8x2.5-Gb/s Wireless Signals over Optical Millimeter Wave through 12 Straight-Line WSSs and 160-km Fiber for Advanced DWDM Metro Networks” (5:15 p.m. Monday, Feb. 25 in room 4)

************************************************************************

RATCHETING UP DATA RATES

IBM has developed a transceiver capable of boosting chip-to-chip bandwidth on printed circuit boards to 300 Gigabits per second (Gb/s) – the fastest rate to date and a development that ultimately will enable even faster speeds for data transmission in homes and businesses. The device, assembled from relatively low-cost components that might someday be easily mass-manufactured, allows for a bi-directional data rate nearly twice that of an earlier generation IBM transceiver described just a year ago at the 2007 OFC/NFOEC meeting.

This increased bandwidth is the result of two specific advances. First, the new transceiver includes 24 channels for sending and receiving data compared to 16 such channels in the previous device. Second, the modulation rate of each of the transceiver's vertical cavity surface emitting lasers (VCSELs) has been increased by 25 percent to 12.5 billion bits per second. In an effort to speed commercialization efforts, IBM has incorporated lasers and detectors that operate at the industry-standard wavelength of 850 nanometers (nm) instead of the proprietary 985-nm technology used in the earlier transceiver.

The device was produced as part of an ongoing Defense Advanced Research Projects Agency (DARPA) program at the U.S. Department of Defense to speed up chip-to-chip communications for supercomputers. However, better input/output technology also is related to performance of large-scale computer systems for businesses and demand by individuals for ubiquitous connectivity and on-demand access to content. Clint Schow of IBM will announce details of this work in talk OMK5, "300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers" (2:45 p.m. Monday, Feb. 25 in room 6D).

************************************************************************

ALTERNATIVE ROUTES ON THE INFORMATION SUPERHIGHWAY

Any savvy commuter can tell you that one of the only things to do if there are too many cars on the road is to exit and explore new routes. Likewise local governments seek to ease traffic congestion not by limiting the number of cars but by building new roads. The same analogy is true of traffic in optical communication. Data transmission capacity has grown enormously in recent years, but so has the demand for this capacity. Although the band currently used for optical communication (1.5 micron wavelength) is sufficient for the moment, the enormous increase of traffic expected in the future demands that scientists and engineers begin exploring new bands now.

Now Kenji Kurokawa and his colleagues at NTT Access Network Service Systems Laboratories in Ibaraki, Japan are investigating optical communication in the 1.0 micron band, introducing a brand new channel for communications and opening up a new “road” for data transmission. They are exploring high-capacity, “wavelength division multiplexed” (WDM) transmission in photonic crystal fiber. In WDM transmission, multiple optical signals are multiplexed on a single optical fiber by using different colors or wavelengths of light to carry different signals. Photonic crystal fibers offer a theoretical endless communication wavelength region, which can enable ultra high capacity transmission.

In his talk, Kurokawa will describe the first WDM transmission experiment using a broadband continuum light source in the 1.0 micron band. He will discuss the possibility of terabit optical communication in the new band and its potential impact on optical communication—essentially, no need to worry about traffic congestion for commuters on the information superhighway. Talk OMH5, “High Capacity WDM Transmission in 1.0 µm Band over Low Loss PCF Using Supercontinuum Source” (2:45 p.m. Monday, Feb. 25 in room 5).

************************************************************************

THE ELECTROMAGNETIC SPECTRUM—A NEW VIEW

The terahertz band is relatively unexplored and unexploited because its range of frequencies is too high for conventional electronics and too small for semiconductor lasers and detectors, but new research to be presented at OFC/NFOEC reflects what scientists have always known - the terahertz band has great potential.

Dr. Bernd Sartorius of the Fraunhofer Heinrich-Hertz-Institute for Telecommunications in Berlin will explore the use of the terahertz band for applications in security, medicine, and materials science and the role telecommunications technologies play in its developments. Terahertz radiation, unlike other scanning technologies, can penetrate materials like paper, clothing and plastics and remain harmless to humans. So, terahertz spectra can indicate explosives or analyze complex pharmaceutical substances where today’s technologies, such as X-rays, cannot.

However, terahertz systems are impractical because they require expensive lasers, liquid helium-cooled detectors, and bulky optical benches that make field work unfeasible. Sartorius will examine the state of the art for terahertz instrumentation, stressing especially new ways that telecom technology can make terahertz systems low cost, flexible, and easily transported. Talk OMS3, “Terahertz Transmitters and Receivers” (5:30 p.m. Monday, Feb. 25 in room 6D).

************************************************************************

ABOUT OFC/NFOEC

Since 1985, the Optical Fiber Communication Conference and Exposition (OFC) has provided an annual backdrop for the optical communications field to network and share research and innovations. In 2004, OFC joined forces with the National Fiber Optic Engineers Conference (NFOEC), creating the largest and most comprehensive international event for optical communications. By combining an exposition of approximately 600 companies with a unique program of peer-reviewed technical programming and special focused educational sessions, OFC/NFOEC provides an unparalleled opportunity, reaching every audience from service providers to optical equipment manufacturers and beyond.

OFC/NFOEC, www.ofcnfoec.org, is managed by the Optical Society of America (OSA) and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc) and the Institute of Electrical and Electronics Engineers/Lasers and Electro-Optics Society (IEEE/LEOS). Acting as non-financial technical co-sponsor is Telcordia Technologies, Inc.

 

 

 

 

Share:
Keyword
Topics

New Technique Accurately Digitizes Transparent Objects

A new imaging technique makes it possible to precisely digitize clear objects and their surroundings, an achievement that has eluded current state-of-the-art 3D rendering methods. The ability to create detailed, 3D digital versions of real-world objects and scenes can be useful for movie production, creating virtual reality experiences, improving design or quality assurance in the production of clear products and even for preserving rare or culturally significant objects.

Added: 19 Sep 2017


The Optical Society Elects Stephen D. Fantone as 2018 Vice President

The Optical Society (OSA) is pleased to announce that its members have elected Stephen D. Fantone, president and founder of Optikos Corporation, United States, as its 2018 vice president. Three directors-at-large were also chosen during this year's election: Roel Baets, Ghent University, Belgium; Giselle Bennett, Georgia Institute of Technology, USA; and Ekaterina Golovchenko, IPG Photonics, USA. The announcement was made today during The Optical Society’s Annual Business Meeting at the 2017 Frontiers in Optics + Laser Science (FIO + LS) conference in Washington, DC, USA.

Added: 19 Sep 2017


OSA Publishing Recognizes and Congratulates Outstanding Reviewers

In support of Peer Review Week 2017, an industry-wide celebration of the essential role that peer review plays in maintaining scientific quality, OSA recognizes and thanks its 2017 class of Outstanding Reviewers. This distinguished group of 25 members of the optics and photonics community was selected based on their commitment to providing a high level of technical expertise and constructive criticism in the peer-review process. Established in 2012, the OSA Outstanding Reviewers recognition is given annually to commend the top reviewers for their exceptional peer-review efforts over the past year.

Added: 14 Sep 2017


New Software Turns Mobile-Phone Accessory into Breathing Monitor

Researchers have developed new software that makes it possible to use low-cost, thermal cameras attached to mobile phones to track how fast a person is breathing. This type of mobile thermal imaging could be used for monitoring breathing problems in elderly people living alone, people suspected of having sleep apnea or babies at risk for sudden infant death syndrome (SIDS).

Added: 13 Sep 2017


The Optical Society Hosts Special Networking and Member Events During FIO + LS 2017

The Optical Society (OSA), the leading professional association in optics and photonics, will host a variety of special events during the 2017 Frontiers in Optics + Laser Science (FIO + LS) conference and exhibit from 17 - 22 September in Washington, DC. The activities include unique networking and professional development programs, a reception with OSA journal editors and special opportunities for OSA members and their families.

Added: 12 Sep 2017


Core Solutions Reach Optimally Extreme Light Pulses

As scientist probe nature ever more precisely with laser pulses, now aiming for the zeptosecond regime – a trillionth of a billionth of a second and the fastest scale of time measured – optimizing each parameter of those pulses can offer more finely tuned measurements of as-yet unknown dynamic properties. The laser wavelength, duration and energy of each pulse, and rate at which pulses are produced are all key factors in observing dynamics such as the real-time electron motions of single molecules together with the motion of consistituent atoms.

Added: 11 Sep 2017


The Optics Driving Today’s Auto Industry

In the next ten years, the auto industry will undergo a profound transformation: the cars it builds, the power moving them forward and the consumers who buy them will look significantly different. Optical technologies, in many ways, will enable these changes. Featuring experts from all aspects of the automotive industry, this panel discussion will highlight advances the technology behind (and above) the dashboard and how it will impact how we drive in the future.

Added: 08 Sep 2017


Light-Based Method Improves Practicality and Quality of Remote Wind Measurements

Researchers have developed a new remote sensing instrument based on light detection and ranging (LIDAR) that could offer a simple and robust way to accurately measure wind speed. The detailed, real-time wind measurements could help scientists to better understand how hurricanes form and provide information that meteorologists can use to pinpoint landfall earlier, giving people more time to prepare and evacuate.

Added: 06 Sep 2017


The Optical Society Announces 2017 Treasurer’s Award Recipient

The Optical Society (OSA), the leading global professional association in optics and photonics, announced today that M. Scott Dineen, senior director of production and technology for OSA has been awarded the 2017 Treasurer’s Award. Dineen has been recognized for excellence in publishing technology and the development of new tools essential for maintaining and enhancing OSA’s publishing leadership

Added: 06 Sep 2017


Rush Holt to Deliver Science Policy talk during 2017 Frontiers in Optics + Laser Sciences Meeting

At a time when there are widespread concerns about the place of science in our society and government, what role should scientists have with policymakers? What can be done to help avoid policies that devalue science and discontinue the much needed investment in research and development? Rush Holt, CEO of the American Association for the Advancement of Science (AAAS) will address these issues and more during a special presentation during the Frontiers in Optics + Laser Science (FIO + LS) conference and exhibition in Washington, DC.

Added: 30 Aug 2017


Clamping Down on Causality by Probing Laser Cavities

Since the realization of the first laser cavity countless questions have been asked for which laser light has provided the answer. Numerous questions have also been posed in an effort to improve on our abilities to produce lasers with various performance specifications and wavelengths. A question that was not asked until recently is – what happens if you shine a laser beam through another laser cavity? It may not seem a practical question to ask experimentally, but after studying how externally incident light interacts with an active laser cavity in quantitative detail, the answer turns out to offer devices with new, seemingly paradoxical optical capabilities.

Added: 29 Aug 2017


High-Dimensional Quantum Encryption Performed in Real-World City Conditions for First Time

For the first time, researchers have sent a quantum-secured message containing more than one bit of information per photon through the air above a city. The demonstration showed that it could one day be practical to use high-capacity, free-space quantum communication to create a highly secure link between ground-based networks and satellites, a requirement for creating a global quantum encryption network.

Added: 24 Aug 2017