OSA's Interactive Science Publishing Initiative Launches with Research on Breathing Disorders and Co



FOR IMMEDIATE RELEASE

Contact:
Lyndsay Meyer
The Optical Society
+1.202.416.1435
lmeyer@osa.org

OSA’s Interactive Science Publishing Initiative Launches with Research on Breathing Disorders and Congenital Heart Defects

New Technologies Enable Researchers to Visualize Narrowed Airways, Developing Chick Embryo Heart

WASHINGTON, Oct. 30 -- Two groups of researchers, one in the United States and one in Australia, are announcing the development of new optical techniques for visualizing the invisible processes at work in several human diseases. The published results are the first to showcase the Optical Society’s (OSA) Interactive Science Publishing (ISP) initiative, which allows authors to submit a manuscript that includes large three-dimensional data and gives researchers, scientists and engineers a way to evaluate new research results more thoroughly.

Described in upcoming issues of Optics Express, the OSA’s open-access journal, and in Journal of the Optical Society of America A (JOSA A), one of these techniques may help clinicians diagnose and treat people with breathing disorders. The other can show three-dimensional structure and the blood flow mechanism at the earliest stages of heart development.

The research takes advantage of ISP, an initiative undertaken by OSA in partnership with the National Library of Medicine, part of the National Institutes of Health, and with the support of the United States Air Force Office of Scientific Research. This initiative allows scientists to expand upon traditional research results by providing software for interactively viewing underlying source data and to objectively compare the performance of different technologies. This data may be related to medical images, such as those taken with X-rays, MRIs, CT scans and ultrasounds, or it may be created in research involving oil and gas exploration, climatology, pollution monitoring and many other fields. For more information on ISP, visit http://www.opticsinfobase.org/isp.cfm.

****************************************************************

IMAGING THE AIRWAYS IN PEOPLE WITH BREATHING PROBLEMS
When the small airways inside a person’s lungs narrow, a problem referred to as "stenosis," severe breathing difficulties can result. Doctors often treat this condition by inserting a small medical stent into the airway to open it up and ease breathing. Critical to this procedure is the ability of doctors to measure the extent of stenosis -- the diameter and length of the narrowed section of airway. Making this measurement accurately helps doctors choose the most appropriately sized stent for each person.

The current clinical practice for imaging the airway combines CT scans with "video endoscopy" images, which involves inserting a tiny video camera into the airways inside the lungs. Now a group of engineers, clinicians and medical researchers at the University of Western Australia and Sir Charles Gairdner Hospital have developed a new optical technique to help better guide treatment decisions. Their technique, called anatomical optical coherence tomography (aOCT), can accurately measure the shape, diameter and length of the airways inside the lungs, even as they expand and contract during breathing.

This new technique is an improvement over video endoscopy, says Robert McLaughlin, who was part of the research team. Video images captured with endoscopy are two-dimensional, which makes it difficult for doctors to accurately estimate the true three-dimensional size and shape of the narrowing airways. Imaging the airway with aOCT, on the other hand, relies on inserting a probe into the airway that emits a very safe, low-power light. The size of the airway can then be measured by detecting the reflected light.

The technology is being tested to see if it can help doctors diagnose and treat people with breathing disorders, says McLaughlin. Other current clinical studies are testing whether aOCT can detect airway changes in people with asthma and chronic obstructive pulmonary disease. According to McLaughlin, this technology can also be used during sleep in patients with sleep apnea, to better understand why the upper airway (throat) collapses and narrows in these individuals.

The new ISP technology enables those reading the paper to see first-hand how aOCT works in airway imaging. To view the images described, visit http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17521.

The research was funded by the National Health and Medical Research Council in  Australia and The Raine Medical Research Foundation.

R. A. McLaughlin, J. P. Williamson, M. J. Phillips, J. J. Armstrong, S. Becker, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, "Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway," Opt. Express 16, 17521-17529 (2008); abstract at
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17521.

****************************************************************

LOOKING FOR THE FIRST BEATS OF A DEVELOPING HEART
Congenital heart defects are responsible for more deaths in the first year of life than any other congenital problem. Some are caused by genetic defects, but the forces that lead to the formation of abnormal hearts in many people are poorly understood.

Part of the problem is that there are no good ways of directly observing a young embryo's heart, where blood begins flowing early in development. Scientists can potentially study this process using fertilized chicken eggs, observing as the chicken embryo forms. In the earliest days of the heart's development, however, the organ is so small that there is no way to image it without harming the embryo.

Now Anjul Davis and colleagues at Duke University and the University of Cincinnati have come up with a new way of measuring blood flow and imaging the structure of the heart in a developing chicken embryo. They have combined two optical techniques called "spectral-domain optical coherence tomography" and "spectral Doppler velocimetry" and their work provides some of the first insights into the mechanism of blood flow at the earliest stages of heart development.

A chicken's heart is very similar to a human's; by studying embryonic heart development in chickens we can better understand and develop treatments for congenital heart disease in humans, says Davis. Understanding how congenital heart defects arise would be a boon for humanity, Davis says, because evidence suggests that earlier interventions for people born with heart defects saves lives and improves the quality of life.

The technology can also be applied to studying blood flow in cancer tumors or in the tiny blood vessels in the brain, says Davis, whose research was funded by National Institutes of Health.

To interact with ISP and images of blood flow in early heart development go to http://www.opticsinfobase.org/abstract.cfm?msid=99859.

A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A, doc. ID 99859 (posted 20 October 2008, in press), http://www.opticsinfobase.org/abstract.cfm?msid=99859.

****************************************************************

Besides being published in OSA’s journals, both articles will also be deposited in PubMed Central, NIH’s free digital archive of biomedical and life sciences journal literature.

About OSA

Uniting more than 70,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

###

Share:
Keyword
Topics

Optics Leaders Announced as Visionary Speakers for 2017 FIO + LS Meeting

The Frontiers in Optics + Laser Science APS/DLS (FIO + LS) conference and exhibition provides a venue for leaders in the optics and photonics community to discuss the latest advances in the field. In 2017, the FIO + LS meeting has been thoughtfully redesigned and revised, offering attendees the best of past meetings while adding innovative elements to this year’s meeting. A new speaker category of visionary speakers have been added and will deliver presentations around the four conference themes

Added: 20 Jul 2017


Researchers Look Inside Dangerous Blood Clots with Optical Clearing Technique

A new technique that makes blood clots optically clear is allowing researchers to use powerful optical microscopy techniques to study the 3D structure of dangerous clots for the first time. Although blood clots stop bleeding after injury, clots that block blood flow can cause strokes and heart attacks.

Added: 17 Jul 2017


New Imaging Technique Fast Enough to Watch Molecular Dynamics Involved in Neurodegenerative Diseases

Researchers have developed a fast and practical molecular-scale imaging technique that could let scientists view never-before-seen dynamics of biological processes involved in neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis.

Added: 13 Jul 2017


OSA Members Host Photonics Facility Tour for Congressman Charlie Dent

During the recent District Work Week, Representative Charlie Dent (R - Pa) toured the Center for Photonics and Nanoelectronics (CPN) and the Smith Family Laboratory for Optical Technologies, Lehigh University, PA. The tour was arranged by OSA members Nelson Tansu, the Daniel E. ’39 and Patricia M. Smith Endowed Chair Professor and Director of the CPN and Sean Anderson, a Photonics Engineer at Cisco.

Added: 12 Jul 2017


OSA’s Optics & Photonics News Wins 2017 APEX Award

OSA Publishing is pleased to announce that the staff of Optics & Photonics News (OPN), The Optical Society’s news and member magazine, has received a 2017 APEX Grand Award for publication excellence. The award honors a series of four commemorative booklets that the OPN team developed to highlight 100 years of The Optical Society.

Added: 11 Jul 2017


The Optical Society Announces 2017 OSA Optical Design & ​Fabrication Congress Highlights

Optical design and fabrication play an ever-increasing role in our modern society as more applications for optics are developed, especially in the areas of imaging, sensing and illumination systems. Advances in optical design and fabrication have led to the ability to utilize modern design tools to reduce cost, augment manufacturability, and enhance system performance in a wide variety applications.

Added: 05 Jul 2017


LASER World of Photonics 2017 Closes in Munich with a Record Number of Exhibitors and Attendees

WASHINGTON — The LASER World of Photonics Congress, a conference and exhibition co-sponsored by The Optical Society (OSA), attracted a record number of exhibitors and attendees over a four day period in Munich, Germany. The meeting was held in conjunction with CLEO/Europe – EQEC 2017 and the European Conferences on Biomedical Optics (ECBO 2017) from 25-29, June 2017.

Added: 03 Jul 2017


OSA Imaging & Applied Optics Congress Focuses on Breakthrough Imaging Innovations

The 2017 OSA Imaging and Applied Optics Congress (AIO/IS) concluded in San Francisco, California with nearly 350 attendees and more than 250 presentations from covering the diverse optical imaging industry. Research highlights included novel imaging optical imaging industry, innovative and collaborative applications and the future of imaging, as well as topical symposia highlighting advancements in 3D Image Acquisition and Display: Technology, Perception and Applications, Applied Industrial Optics, Computational Optical Sensing and Imaging, Imaging Systems and Applications, Mathematics in Imaging, Propagation Through and Characterization of Atmospheric and Oceanic Phenomena.

Added: 30 Jun 2017


Seeing the Forest Through the Trees with a New LiDAR System

Shortly after lasers were first developed in the 1960s, LiDAR – whose name originated as a combination of “light” and “radar” – capitalized on the newly unique precision they offered for measuring both time and distance. LiDAR quickly became the standard method for (3-D) land surveys and is now used in a multitude of sensing applications, such as self-driving cars.

Added: 27 Jun 2017


Moisture-Responsive ‘Robots’ Crawl with No External Power Source

Using an off-the-shelf camera flash, researchers turned an ordinary sheet of graphene oxide into a material that bends when exposed to moisture. They then used this material to make a spider-like crawler and claw robot that move in response to changing humidity without the need for any external power.

Added: 26 Jun 2017


OSA to Host an Incubator Meeting on Materials for Optomechanical Actuation

Incubator meeting to provide a collaborative forum for problem-solving optomechanical materials challenges.

Added: 25 Jun 2017


New Screen Coating Makes Reading in Sunlight a Lot Easier. The Secret? Moth Eyes.

Screens on even the newest phones and tablets can be hard to read outside in bright sunlight. Inspired by the nanostructures found on moth eyes, researchers have developed a new antireflection film that could keep people from having to run to the shade to look at their mobile devices.

Added: 22 Jun 2017