Researchers Generate High-Speed Pulses of Laser Light on Silicon, Speeding Data Transmission



* * * MEDIA ADVISORY * * *

Contact:  
Lyndsay Meyer
The Optical Society
+1.202.416.1435
lmeyer@osa.org
 
Keira Shein
WilkinsonShein Communications
410.363.9494
keira@wilkinsonshein.com


RESEARCHERS GENERATE HIGH-SPEED PULSES OF LASER LIGHT ON SILICON,
SPEEDING DATA TRANSMISSION

WASHINGTON, Aug. 21 – In the Sept. 3 issue of Optical Society of America's Optics Express, published online today, researchers announce that they have built the world's first "mode-locked silicon evanescent laser."  Mode-locked evanescent lasers can deliver stable short pulses of laser light that are useful for many optical applications, including high-speed data transmission, multiple wavelength generation, remote sensing (LIDAR) and highly accurate optical clocks.  This new work is a significant step toward the goal of combining lasers and other key optical components on silicon, providing a way to integrate optical and electronic functions on a single chip and enabling new types of integrated circuits.  It introduces a more practical technology with lower cost, lower power consumption and more compact devices.
 
Summary
Present-day computer technology depends on weak electrical currents for data communication within the silicon-based microprocessor.  By causing silicon to emit light and exhibit other potentially useful optical properties, integration of photonic devices on silicon becomes possible.  The problem in the past – it is extremely difficult, nearly impossible, to create a laser in silicon.

Less than one year ago, a research team led by John Bowers at the University of California, Santa Barbara and Intel successfully created laser light from electrical current on silicon by placing a layer of indium phosphide (InP), an important technology in high-speed communication, above the silicon.  In this new study, electrically-pumped lasers emitting 40 billion pulses of light per second were demonstrated, built on the hybrid silicon platform developed the year prior.  This is the first-ever achievement of such a rate in silicon and one that matches the rates produced by other media in standard use today.  These short pulses are composed of many evenly spaced colors of laser light, which could be separated and each used to transmit different high-speed information, replacing the need for hundreds of lasers with just one.

Creating optical components in silicon will lead to optoelectronic devices that can increase the amount and speed of data transmission in computer chips while using existing silicon technology.  Employing existing silicon technology is a desirable goal because it would represent a potentially less expensive and easier-to-implement way of mass-producing future-generation devices that use both electrons and photons to process information, rather than just electrons as has been the case in the past.  This advance was made possible by funds from the Microsystems Technology Office of the Defense Advanced Research Projects Agency (DARPA) at the United States Department of Defense.

Paper
"Mode-Locked Silicon Evanescent Lasers," Optics Express, Vol. 15, Issue 18.

Abstract
We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz, even without RF drive.  The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution.  Results of both passive and hybrid mode locking are discussed.  This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

For a copy of the paper, please contact OSA's
Lyndsay Meyer, 202.416.1435, lmeyer@osa.org.

 

Share:
Keyword
Topics

Getting Hold of Quantum Dot Biosensors

Quantum dots (QDs) have found so many applications in recent years, they can now be purchased with a variety of composite structures and configurations. Some are available suspended in a biologically friendly fluid, making them well poised to serve as biomarkers for single-molecule tagging and tracking. But suppose you wanted to trap and move one of these single nanoparticle tags the same way other biologists might grab tissue samples with a tweezer?

Added: 22 Aug 2017


Guide Star Alliance Team Receives OSA’s 2017 Paul F. Forman Team Engineering Excellence Award

The Optical Society (OSA) is pleased to announce that Guide Star Alliance is the winner of the 2017 Paul F. Forman Team Engineering Excellence Award. Under contract of and in close collaboration with the European Southern Observatory (ESO), industrial partners, TOPTICA Photonics and MPB Communications (MPBC), joined together to develop a high-power CW tunable laser system called the SodiumStar. The team’s development is now considered the quasi-standard for existing and planned telescopes around the world. The Guide Star Alliance will receive the award on 18 September 2017, during Frontiers in Optics (FiO) + Laser Science (LS) in Washington DC, USA.

Added: 18 Aug 2017


New Terahertz Imaging Approach Could Speed Up Skin Cancer Detection

Researchers have developed a new terahertz imaging approach that, for the first time, can acquire micron-scale resolution images while retaining computational approaches designed to speed up image acquisition. This combination could allow terahertz imaging to be useful for detecting early-stage skin cancer without requiring a tissue biopsy from the patient.

Added: 17 Aug 2017


New Tool Aims to Make Surgery Safer by Helping Doctors See Nerves

During operations, it can be difficult for surgeons to avoid severing crucial nerves because they look so much like other tissue. A new noninvasive approach that uses polarized light to make nerves stand out from other tissue could help surgeons avoid accidentally injuring nerves or assist them in identifying nerves in need of repair.

Added: 16 Aug 2017


Relativistic Self-Focusing Gives Mid-IR Driven Electrons a Boost

Conventional particle accelerators can range from large room-sized devices to facilities multiple kilometers across. One of the ways that scientists have looked to reduce the size and expense of future accelerators is by developing laser –driven plasma acceleration. Such accelerators, however, are growing in size and complexity in order to maintain relevance for one of their applications—high energy physics. However, there are many applications that can use a lower energy and higher repetition rate accelerated beam. For the first time, scientists have observed the production of relativistic electrons driven by low-energy, ultrashort mid-infrared laser pulses.

Added: 15 Aug 2017


OSA Laser Congress Plenary to Highlight Ultrafast Laser Systems and Black Hole Detection

The OSA Laser Congress 2017 will feature the latest advancements in solid state laser developments and related technologies for use in free space laser communication, laser-based sensing and numerous industrial applications.

Added: 10 Aug 2017


New Optical Method Pinpoints Weak Spots in Jet Engine Thermal Coatings

Researchers have demonstrated, for the first time, that an optical analysis method can reveal weak areas in ceramic thermal barrier coatings that protect jet engine turbines from high temperatures and wear. The technique could be used to predict how long coatings would last on an airplane and might eventually lead to new thermal barrier coatings, making engines more efficient and cutting both the cost and pollution of air travel.

Added: 09 Aug 2017


The Optical Society Congratulates Ed White on Selection as Chair of the NPI

The Optical Society (OSA) commends the selection of Edward White, associate vice president of test, assembly and packaging and corporate outreach for AIM Photonics, as the next National Photonics Initiative (NPI) Steering Committee Chair. White will succeed Alan Willner, the Steven and Kathryn Sample Chair in Engineering University of Southern California and 2016 president of OSA. The National Photonics Initiative is an alliance of top scientific societies uniting industry and academia to raise awareness of photonics, and its impact on society.

Added: 04 Aug 2017


See the World Differently at FIO + LS 2017

Whether you are in an autonomous vehicle looking to avoid collisions with nearby objects, or sitting on Earth and trying to detect collisions of black holes in the furthest galaxies, the Frontiers in Optics + Laser Science APS/DLS (FIO + LS) plenary presentations will detail recent achievements in gravitational wave science and today’s LiDAR applications.

Added: 03 Aug 2017


The Optical Society Foundation Concludes Successful 2017 Innovation School

The Optical Society Foundation (OSAF) hosted early-career professionals during its first Innovation School from 23-27 July at OSA headquarters in Washington DC. The four-day program focused on honing ‘intrapreneurial’ skills through a series of interactive ‘ideation and customer validation’ exercises. In addition, the hands-on program was accompanied by presentations led by CEO’s, entrepreneurs and innovation leaders in the optics and photonics industry.

Added: 01 Aug 2017


The Optical Society Creates Optical Design Innovator Award

The Optical Society (OSA) is pleased to announce the creation of the Kevin P. Thompson Optical Design Innovator Award recognizing significant contributions to lens design, optical engineering or metrology by an individual at an early career stage. The inaugural award will be given in 2018.

Added: 26 Jul 2017


Sophisticated Medical Imaging Technique Proves Useful for Automotive Industry

Many of today’s cars are coated with paint that exhibits a metallic or glittery shine. The exact sparkle and color you see is determined by the distribution and characteristics of tiny metal flakes used in the paint. A new approach based on the medical imaging technique optical coherence tomography (OCT) provides the car industry with a practical way to automatically analyze these metal flakes, which until now have been difficult to image, in order to improve the efficiency of the automotive finishing process.

Added: 25 Jul 2017