More Accurate Breast Cancer Diagnosis May Come From Combined MRI-Optics Method


Lyndsay Meyer
The Optical Society


WASHINGTON, April 13 – By combining two techniques, magnetic resonance imaging (MRI) and near-infrared optics, researchers at Dartmouth College and Dartmouth Medical School may have devised a new, potentially more accurate method for diagnosing breast cancer. Their pilot study, demonstrating the feasibility of the concept, is published in the April 15 issue of the journal Optics Letters, published by the Optical Society of America.

The new technique utilizes MRI to produce an image of the breast, yielding information on its structure, including shape and composition. The near-infrared light technique provides information on how the tissue is functioning, for example, whether a region contains a large amount of blood and is rapidly consuming oxygen as early cancers typically do. The researchers are hoping this dual-procedure approach will be a key to learning which tissues are malignant before performing a biopsy.

The pilot study involved a 29-year-old woman with a ductal carcinoma, a very common breast cancer, in her left breast. A contrast MRI procedure was performed, where MRI was done before and after the contrasting agent gadolinium was injected. The area enhanced by the contrasting agent was targeted for the optical technique, known as near-infrared spectroscopy (NIRS). The results showed the area's hemoglobin level was high, oxygen saturation was low and water content was high, all indicators of cancerous tissue.

Recent advancements in medical imaging systems have focused on increasing the detail of anatomical images, but there has also been a growing interest in devices that provide information on tissue function. One of the difficulties with functional imaging has been that most of these devices have low spatial resolution. The structural information from the MR image helps guide the NIRS technique to the regions of interest so that the two can together create high-resolution, functional images of breast cancer.

The American Cancer Society recently recommended MRI screening for patients at high risk of developing breast cancer in their lifetimes. Researchers believe that this new dual-procedure technique may potentially aid in cancer diagnosis.

Screening for breast cancer typically begins with X-ray mammography to look for tumors and cysts in women without any symptoms. Mammograms are much less expensive than MRI, but because they compress the breast to show all of the information in one view, they are a less effective tool, especially when the breast is dense. MRI provides multiple slices of high-resolution images of breast tissue, creating a three-dimensional picture. Unlike mammography, the NIRS technique does not generate images directly from the data acquired by the machine. It records the spectrum of near-infrared light that is absorbed or scattered (bounced around) in the tissue. One of the most challenging aspects of the Dartmouth team's work was developing the software to reconstruct and display the information so it could be compared with the MR image.

The dual-procedure scanning approach should not be much more expensive than current MRI, said Dartmouth College researcher Keith Paulsen. The machines used for MRI can cost millions of dollars, but the additional equipment for NIRS would be a fraction of that amount and could be used in conjunction with existing MRI machines. If larger studies prove to be successful and the procedure is deemed valuable enough for insurance reimbursement by the FDA, Paulsen said this new method could become more widely available within the next five years.

The Dartmouth researchers have been working on the project for about four years, receiving several hundred thousand dollars a year from the National Cancer Institute, a component of the National Institutes of Health.

The next step will be to perform a larger number of case studies. The researchers will use volunteers who have breast abnormalities that have been recommended for biopsy. Employing the new dual-procedure approach, they will image the subjects before the biopsy and compare their results to the findings from the biopsy. Dartmouth aims to complete approximately 50 such cases over the next several years.

Paper: "Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size," Colin M. Carpenter et al., Optics Letters, Vol. 32, No. 8, April 15, p. 933-935; abstract at

About OSA

Uniting more than 70,000 professionals from 134 countries, the Optical Society of America (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit





Sophisticated Medical Imaging Technique Proves Useful for Automotive Industry

Many of today’s cars are coated with paint that exhibits a metallic or glittery shine. The exact sparkle and color you see is determined by the distribution and characteristics of tiny metal flakes used in the paint. A new approach based on the medical imaging technique optical coherence tomography (OCT) provides the car industry with a practical way to automatically analyze these metal flakes, which until now have been difficult to image, in order to improve the efficiency of the automotive finishing process.

Added: 25 Jul 2017

Optics Leaders Announced as Visionary Speakers for 2017 FIO + LS Meeting

The Frontiers in Optics + Laser Science APS/DLS (FIO + LS) conference and exhibition provides a venue for leaders in the optics and photonics community to discuss the latest advances in the field. In 2017, the FIO + LS meeting has been thoughtfully redesigned and revised, offering attendees the best of past meetings while adding innovative elements to this year’s meeting. A new speaker category of visionary speakers have been added and will deliver presentations around the four conference themes

Added: 20 Jul 2017

Researchers Look Inside Dangerous Blood Clots with Optical Clearing Technique

A new technique that makes blood clots optically clear is allowing researchers to use powerful optical microscopy techniques to study the 3D structure of dangerous clots for the first time. Although blood clots stop bleeding after injury, clots that block blood flow can cause strokes and heart attacks.

Added: 17 Jul 2017

New Imaging Technique Fast Enough to Watch Molecular Dynamics Involved in Neurodegenerative Diseases

Researchers have developed a fast and practical molecular-scale imaging technique that could let scientists view never-before-seen dynamics of biological processes involved in neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis.

Added: 13 Jul 2017

OSA Members Host Photonics Facility Tour for Congressman Charlie Dent

During the recent District Work Week, Representative Charlie Dent (R - Pa) toured the Center for Photonics and Nanoelectronics (CPN) and the Smith Family Laboratory for Optical Technologies, Lehigh University, PA. The tour was arranged by OSA members Nelson Tansu, the Daniel E. ’39 and Patricia M. Smith Endowed Chair Professor and Director of the CPN and Sean Anderson, a Photonics Engineer at Cisco.

Added: 12 Jul 2017

OSA’s Optics & Photonics News Wins 2017 APEX Award

OSA Publishing is pleased to announce that the staff of Optics & Photonics News (OPN), The Optical Society’s news and member magazine, has received a 2017 APEX Grand Award for publication excellence. The award honors a series of four commemorative booklets that the OPN team developed to highlight 100 years of The Optical Society.

Added: 11 Jul 2017

The Optical Society Announces 2017 OSA Optical Design & ​Fabrication Congress Highlights

Optical design and fabrication play an ever-increasing role in our modern society as more applications for optics are developed, especially in the areas of imaging, sensing and illumination systems. Advances in optical design and fabrication have led to the ability to utilize modern design tools to reduce cost, augment manufacturability, and enhance system performance in a wide variety applications.

Added: 05 Jul 2017

LASER World of Photonics 2017 Closes in Munich with a Record Number of Exhibitors and Attendees

WASHINGTON — The LASER World of Photonics Congress, a conference and exhibition co-sponsored by The Optical Society (OSA), attracted a record number of exhibitors and attendees over a four day period in Munich, Germany. The meeting was held in conjunction with CLEO/Europe – EQEC 2017 and the European Conferences on Biomedical Optics (ECBO 2017) from 25-29, June 2017.

Added: 03 Jul 2017

OSA Imaging & Applied Optics Congress Focuses on Breakthrough Imaging Innovations

The 2017 OSA Imaging and Applied Optics Congress (AIO/IS) concluded in San Francisco, California with nearly 350 attendees and more than 250 presentations from covering the diverse optical imaging industry. Research highlights included novel imaging optical imaging industry, innovative and collaborative applications and the future of imaging, as well as topical symposia highlighting advancements in 3D Image Acquisition and Display: Technology, Perception and Applications, Applied Industrial Optics, Computational Optical Sensing and Imaging, Imaging Systems and Applications, Mathematics in Imaging, Propagation Through and Characterization of Atmospheric and Oceanic Phenomena.

Added: 30 Jun 2017

Seeing the Forest Through the Trees with a New LiDAR System

Shortly after lasers were first developed in the 1960s, LiDAR – whose name originated as a combination of “light” and “radar” – capitalized on the newly unique precision they offered for measuring both time and distance. LiDAR quickly became the standard method for (3-D) land surveys and is now used in a multitude of sensing applications, such as self-driving cars.

Added: 27 Jun 2017

Moisture-Responsive ‘Robots’ Crawl with No External Power Source

Using an off-the-shelf camera flash, researchers turned an ordinary sheet of graphene oxide into a material that bends when exposed to moisture. They then used this material to make a spider-like crawler and claw robot that move in response to changing humidity without the need for any external power.

Added: 26 Jun 2017

OSA to Host an Incubator Meeting on Materials for Optomechanical Actuation

Incubator meeting to provide a collaborative forum for problem-solving optomechanical materials challenges.

Added: 25 Jun 2017